SEMINORM GENERATING RELATIONS AND THEIR MINKOWSKI FUNCTIONALS

ÁRPÁD SZÁZ AND JÓZSEF TÚRI

Abstract. We show that instead of the Minkowski functionals of absorbing, balanced, convex subsets of a vector space X it is more convenient to consider first the Minkowski functionals of balanced valued linear relations of \mathbb{R}_+ onto X.

Introduction

A relation F of the set \mathbb{R}_+ of all positive numbers onto a vector space X over $K = \mathbb{R}$ or \mathbb{C} will be called a seminorm generating relation for X if

1. $F(r) + F(s) \subseteq F(r+s)$ for all $r, s \in \mathbb{R}_+$;
2. $\lambda F(r) \subseteq F(tr)$ for all $\lambda \in K$ and $r, t \in \mathbb{R}_+$ with $|\lambda| \leq t$.

This definition is mainly motivated by the fact that if A is an absorbing, balanced, convex subset of X and F_A is a relation on \mathbb{R}_+ to X such that

$$F_A(r) = rA$$

for all $r \in \mathbb{R}_+$, then F_A is a seminorm generating relation for X.

Moreover, if p is a seminorm on X and F_p and \tilde{F}_p are relations on \mathbb{R}_+ to X such that

$$F_p(r) = B_{r}^{p}(0) \quad \text{and} \quad \tilde{F}_p(r) = \tilde{B}_{r}^{p}(0)$$

for all $r \in \mathbb{R}_+$, then F_p and \tilde{F}_p are also seminorm generating relations for X.

If F is a seminorm generating relation for X, then the function p_F defined by

$$p_F(x) = \inf \left(F^{-1}(x) \right)$$

1991 Mathematics Subject Classification. Primary 15A03; Secondary 46A03.

Key words and phrases. Absorbing, balanced, convex sets; balanced valued linear relations; Minkowski functionals of sets and relations.

The research of the first author has been supported by the grants OTKA T-030082 and FKFP 0310/1997.
for all \(x \in X \), will be called the Minkowski functional of \(F \). Namely, if \(A \) is an absorbing, balanced, convex subset of \(X \), then \(p_A = p_{rA} \) is just the usual Minkowski functional of \(A \).

After establishing some easy consequences of the definition of seminorm generating relations, we shall only prove the following basic algebraic properties of the Minkowski functionals.

Theorem 1. If \(F \) is a seminorm generating relation for \(X \), then \(p_F \) is a seminorm on \(X \) such that \(F_{p_F} \subset F \subset \overline{F}_{p_F} \).

Corollary 1. If \(A \) is an absorbing, balanced, convex subset of \(X \), then \(p_A \) is a seminorm on \(X \) such that \(B^{p_A}_1(0) \subset A \subset \overline{B}^{p_A}_1(0) \).

Theorem 2. If \(p \) is a seminorm on \(X \) and \(F \) is a seminorm generating relation for \(X \) such that \(F_p \subset F \subset \overline{F}_p \), then \(p = p_F \).

Corollary 2. If \(p \) is a seminorm on \(X \) and \(A \) is an absorbing, balanced, convex subset of \(X \) such that \(B^p_1(0) \subset A \subset \overline{B}^p_1(0) \), then \(p = p_A \).

Theorem 3. If \(F \) is a seminorm generating relation for \(X \), then \(p_F \) is a norm if and only if \(\bigcap_{r \in \mathbb{R}_+} F(r) = \{0\} \).

Corollary 3. If \(A \) is an absorbing, balanced, convex subset of \(X \), then \(p_A \) is a norm on \(X \) if and only if \(\bigcap_{r \in \mathbb{R}_+} rA = \{0\} \).

Theorem 4. If \(F \) is a seminorm generating relation for \(X \), then \(F = F_{p_F} \) if and only if \(F(r) = \bigcup_{s < r} F(s) \) for all \(r \in \mathbb{R}_+ \).

Corollary 4. If \(A \) is an absorbing, balanced, convex subset of \(X \), then \(A = B^{p_A}_1(0) \) if and only if \(A = \bigcup_{s < r} sA \).

Theorem 5. If \(F \) is a seminorm generating relation for \(X \), then \(F = \overline{F}_{p_F} \) if and only if \(F(r) = \bigcap_{s > r} F(s) \) for all \(r \in \mathbb{R}_+ \).

Corollary 5. If \(A \) is an absorbing, balanced, convex subset of \(X \), then \(A = \overline{B}^{p_A}_1(0) \) if and only if \(A = \bigcap_{s > r} sA \).

The topological properties of seminorm generating relations and their Minkowski functionals will be investigated elsewhere.

1. **Prerequisites**

A subset \(F \) of a product set \(X \times Y \) is called a relation on \(X \) to \(Y \). If in particular \(X = Y \), then we simply say that \(F \) is a relation on \(X \). Note that if \(F \) is a relation on \(X \) to \(Y \), then \(F \) is also a relation on \(X \cup Y \).

If \(F \) is a relation on \(X \) to \(Y \), and moreover \(x \in X \) and \(A \subset X \), then the sets \(F(x) = \{ y \in X: (x, y) \in F \} \) and \(F[A] = \bigcup_{x \in A} F(x) \) are called the images of \(x \) and \(A \) under \(F \), respectively.

If \(F \) is a relation on \(X \) to \(Y \), then the sets \(D_F = \{ x \in X : F(x) \neq \emptyset \} \) and \(R_F = F[D_F] \) are called the domain and range of \(F \), respectively. If in
particular $X = D_F$ (and $Y = R_F$), then we say that F is a relation of X into (onto) Y.

A relation F on X to Y is said to be a function if for each $x \in D_F$ there exists a unique $y \in Y$ such that $y \in F(x)$. In this case, by identifying singletons with their elements, we usually write $F(x) = y$ in place of $F(x) = \{y\}$.

If F is a relation on X to Y, then values $F(x)$, where $x \in X$, uniquely determine F since we have $F = \bigcup_{x \in X} \{x\} \times F(x)$. Therefore, the inverse relation F^{-1} of F can be defined such that $F^{-1}(x) = \{y \in Y : x \in F(y)\}$ for all $x \in X$.

Throughout in the sequel, X will denote a vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C}. And for any $\lambda \in \mathbb{K}$ and $A, B \subseteq X$ we write $\lambda A = \{\lambda x : x \in A\}$ and $A + B = \{x + y : x \in A, y \in B\}$.

Note that thus two axioms of a vector space may fail to hold for the family $\mathcal{P}(X)$ of all subsets of X. Namely, only the one-point subsets of X can have additive inverses. Moreover, in general, we only have $(\lambda + \mu)A \subseteq \lambda A + \mu A$.

If A is a subset of X, then we say that:

1. A is absorbing if $X = \bigcup_{r \in \mathbb{R}^+} rA$;
2. A is balanced if $\lambda A \subseteq A$ for all $\lambda \in \mathbb{K}$ with $|\lambda| \leq 1$;
3. A is convex if $rA + (1-r)A \subseteq A$ for all $r \in \mathbb{R}^+$ with $r < 1$.

A function p of X into \mathbb{R} is called a seminorm on X if

$$p(\lambda x) \leq |\lambda| p(x) \quad \text{and} \quad p(x + y) \leq p(x) + p(y)$$

for all $\lambda \in \mathbb{K}$ and $x, y \in X$. A seminorm p is called a norm if $p(x) = 0$ implies $x = 0$.

If p is a seminorm on X, then for each $r \in \mathbb{R}^+$ the relations B^p_r and \bar{B}^p_r, defined by

$$B^p_r(x) = \{y \in X : p(x - y) < r\} \quad \text{and} \quad \bar{B}^p_r(x) = \{y \in X : p(x - y) \leq r\}$$

for all $x \in X$, are called the r-sized open and closed p-surroundings in X, respectively.

Concerning the above basic concepts we shall only need here the following simple theorems.

Theorem 1.1. If $A \subseteq X$, then the following assertions hold:

1. if A is convex, then $(r + s)A = rA + sA$ for all $r, s \in \mathbb{R}^+$;
2. if A is balanced, then $\lambda A \subseteq \mu A$ for all $\lambda, \mu \in \mathbb{K}$ with $|\lambda| \leq |\mu|$.

Remark 1.2. Therefore, a balanced subset A of X is absorbing if and only $X = \bigcup_{n=1}^\infty nA$.
Theorem 1.3. If \(p \) is a seminorm on \(X \), then

1. \(p(x) \geq 0 \) for all \(x \in X \);
2. \(p(\lambda x) = |\lambda| p(x) \) for all \(\lambda \in \mathbb{K} \) and \(x \in X \).

Remark 1.4. Therefore, our present definition of a seminorm coincides with the usual one.

Theorem 1.5. If \(p \) is a seminorm on \(X \) and \(r \in \mathbb{R}_+ \), then

1. \(B^p_r(x) = x + B^p_r(0) \) for all \(x \in X \);
2. \(B^p_r(0) \) is an absorbing, balanced and convex subset of \(X \) such that \(B^p_r(0) = rB^p_1(0) \).

Remark 1.6. Moreover, the same statements hold for the closed surroundings \(\bar{B}^p_r \).

2. Seminorm generating relations

Definition 2.1. A relation \(F \) of \(\mathbb{R}_+ \) onto \(X \) will be called a seminorm generating relation for \(X \) if

1. \(F(r) + F(s) \subset F(r + s) \) for all \(r, s \in \mathbb{R}_+ \);
2. \(\lambda F(r) \subset F(tr) \) for all \(\lambda \in \mathbb{K} \) and \(r, t \in \mathbb{R}_+ \) with \(|\lambda| \leq t \).

The above definition is mainly motivated by the following simple

Example 2.2. If \(A \) is an absorbing, balanced, convex subset of \(X \) and \(F_A \) is a relation on \(\mathbb{R}_+ \) to \(X \) such that

\[F_A(r) = rA \]

for all \(r \in \mathbb{R}_+ \), then \(F_A \) is a seminorm generating relation for \(X \).

Since \(A \) is absorbing, for each \(x \in X \) there exists an \(r \in \mathbb{R}_+ \) such that \(x \in rA \). Hence, it is clear that \(A \neq \emptyset \), and thus \(\mathbb{R}_+ \) is the domain of \(F_A \). Moreover, since \(x \in F_A(r) \), it is clear that \(X \) is the range of \(F_A \).

On the other hand, if \(r, s \in \mathbb{R}_+ \), then by Theorem 1.1 (1) it is clear that

\[F_A(r + s) = (r + s)A = rA + sA = F_A(r) + F_A(s). \]

Moreover, if \(\lambda \in \mathbb{K} \) and \(r, t \in \mathbb{R}_+ \) such that \(|\lambda| \leq t \), then by Theorem 1.1 (2) it is clear that

\[\lambda F_A(r) = \lambda(rA) = r(\lambda A) \subset r(tA) = (tr)A = F_A(tr). \]

Now, as an important particular case of Example 2.2, we can also state
Example 2.3. If p is a seminorm on X and F_p and $\tilde F_p$ are relations on \mathbb{R}_+ to X such that

$$F_p(r) = B^p_r(0) \quad \text{and} \quad \tilde F_p(r) = \tilde B^p_r(0)$$

for all $r \in \mathbb{R}_+$, then F_p and $\tilde F_p$ are seminorm generating relations for X.

From Theorem 1.5(2) we know that $A = B^1_1(0)$ is an absorbing, balanced, convex subset of X such that

$$F_p(r) = B^p_1(0) = r B^p_1(0) = r A = F_A(r)$$

for all $r \in \mathbb{R}_+$. Therefore, $F_p = F_A$, and thus F_p is a seminorm generating relation for X by Example 2.2.

The fact that $\tilde F_p$ is also a seminorm generating relation for X can be proved quite similarly by using Remark 1.6 and Example 2.2.

In the sequel, beside Definition 2.1, we shall only need the following obvious

Theorem 2.4. If F is a seminorm generating relation for X, then

1. $0 \in F(r)$ for all $r \in \mathbb{R}_+$;
2. $r F(s) \subseteq F(rs)$ for all $r, s \in \mathbb{R}_+$;
3. $F(r) \subseteq F(s)$ for all $r, s \in \mathbb{R}_+$ with $r \leq s$.

Proof. Since the assertions (1) and (2) are immediate from the homogeneity property 2.1(2) of F, we need only note that

$$F(r) = F(r) + \{0\} \subseteq F(r) + F(s-r) \subseteq F(s)$$

for all $r, s \in \mathbb{R}_+$ with $r < s$. Therefore, the assertion (3) also holds.

However, as a converse to Example 2.2, we can also easily prove the following

Theorem 2.5. If F is a seminorm generating relation for X, then there exists an absorbing, balanced, convex subset A of X such that $F = F_A$.

Proof. If $r, s \in \mathbb{R}_+$, then by the homogeneity property 2.4(2) of F we have

$$r F(s) \subseteq F(rs).$$

Hence, by writing r^{-1} in place of r, and rs in place of s, we can see that

$$r^{-1} F(rs) \subseteq F(s).$$

This implies that $F(rs) \subseteq r F(s)$. Therefore, the equality

$$F(rs) = r F(s)$$

is also true. Hence, under the notation $A = F(1)$, it follows that

$$F(r) = r F(1) = r A$$
for all $r \in \mathbb{R}_+$.

Therefore, it remains only to prove that A is an absorbing, balanced and convex subset of X. For this, note that if $x \in X$, then since F is onto X there exists an $r \in \mathbb{R}_+$ such that $x \in F(r) = rA$. Therefore, A is absorbing. Moreover, if $\lambda \in \mathbb{K}$ such that $|\lambda| \leq 1$, then from the homogeneity property 2.1(2) of F we can at once see that

$$\lambda A = \lambda F(1) \subset F(1) = A.$$

Therefore, A is balanced. Moreover, if $0 < t < 1$, then by the homogeneity and additivity properties of F it is clear that

$$tA + (1 - t)A = tF(1) + (1 - t)F(1) = F(t) + F(1 - t) \subset F(1) = A.$$

Therefore, A is convex.

Now, in addition to Theorem 2.4, we can also easily state the following

Theorem 2.6. If F is a seminorm generating relation for X, then

1. $F(rs) = rF(s)$ for all $r, s \in \mathbb{R}_+$;
2. $F(r + s) = F(r) + F(s)$ for all $r, s \in \mathbb{R}_+$;
3. $F(r)$ is an absorbing, balanced, convex subset of X for all $r \in \mathbb{R}_+$.

Remark 2.7. Note that if F is a balanced valued homogeneous relation of \mathbb{R}_+ into X, then

$$\lambda F(r) \subset tF(r) = F(tr)$$

for all $\lambda \in \mathbb{K}$ and $r, t \in \mathbb{R}_+$ with $|\lambda| \leq t$. That is, the homogeneity property 2.1(2) also holds.

3. **The Minkowski functionals of seminorm generating relations**

Definition 3.1. If F is a seminorm generating relation for X, then the function p_F defined by

$$p_F(x) = \inf \{ F^{-1}(x) \}$$

for all $x \in X$, will be called the Minkowski functional or gauge of F.

Example 3.2. If A is an absorbing, balanced, convex subset of X, then we can at once see that

$$p_{rA}(x) = \inf \{ r \in \mathbb{R}_+ : x \in rA \}$$

for all $x \in X$. Therefore, $p_A = p_{rA}$ is just the usual Minkowski functional of A. (See, [1, p. 24].)

Therefore, it is not surprising that, as a useful reformulation of a well-known theorem on the Minkowski functionals of sets, we have the following
Theorem 3.3. If F is a seminorm generating relation for X, then p_F is a seminorm on X such that

$$F_{p_F} \subset F \subset \tilde{F}_{p_F}.$$

Proof. If $\lambda \in \mathbb{K}$ and $x \in X$, then by the definition of p_F for each $\varepsilon > 0$
there exists an $r \in F^{-1}(x)$ such that $r < p_F(x) + \varepsilon$. Hence, by noticing that
$x \in F(r)$ and using the homogeneity property 2.1(2) of F, we can infer that

$$\lambda x \in \lambda F(r) \subset F(t r),$$

and thus $tr \in F^{-1}(\lambda x)$ for all $t \in \mathbb{R}_+$ with $|\lambda| \leq t$. Hence, since
$tr < tp_F(x) + t\varepsilon$, it is clear that

$$p_F(\lambda x) = \inf \left(F^{-1}(\lambda x) \right) < tp_F(x) + t\varepsilon$$

for all $t \in \mathbb{R}_+$ with $|\lambda| \leq t$. Hence, by letting $t \to |\lambda|$ and $\varepsilon \to 0$, we can
infer that

$$p_F(\lambda x) \leq |\lambda|p_F(x).$$

On the other hand, if $x, y \in X$, then again by the definition of p_F for each $\varepsilon > 0$ there exist
r \in F^{-1}(x)$ and $s \in F^{-1}(y)$ such that $r < p_F(x) + \varepsilon$ and
s < p_F(y) + \varepsilon$. Hence, by noticing that $x \in F(r)$ and $y \in F(s)$, and using
the additivity property 2.1(1) of F, we can infer that

$$x + y \in F(r) + F(s) \subset F(r + s),$$

and thus $r + s \in F^{-1}(x + y)$. Hence, since $r + s < p_F(x) + p_F(y) + 2\varepsilon$, it is clear that

$$p_F(x + y) = \inf \left(F^{-1}(x + y) \right) < p_F(x) + p_F(y) + 2\varepsilon,$$

and thus

$$p_F(x + y) \leq p_F(x) + p_F(y).$$

Therefore, p_F is a seminorm on X.

Finally, if $r \in \mathbb{R}_+$ and $x \in F_{p_F}(r) = B_{p_F}^r(0)$, i.e., $p_F(x) < r$, then again
by the definition of p_F there exists $s \in F^{-1}(x)$ such that $s < r$. Hence, by
the monotonicity property 2.4(3) of F, it is clear that $x \in F(s) \subset F(r)$. Therefore
$F_{p_F}(r) \subset F(r)$.

On the other hand, if $r \in \mathbb{R}_+$ and $x \in F(r)$, then $r \in F^{-1}(x)$. Therefore,
by the definition of p_F, we have $p_F(x) \leq r$, and hence $x \in B_{p_F}^r(0) = \tilde{F}_{p_F}(r)$.
Therefore, $F(r) \subset \tilde{F}_{p_F}(r)$ is also true.

Now, as an immediate consequence of Example 2.2 and Theorem 3.3, we can also state the following more familiar
Corollary 3.4. If A is an absorbing, balanced, convex subset of X, then p_A is a seminorm on X such that
\[B_1^{p_A}(0) \subset A \subset \bar{B}_1^{p_A}(0). \]

In addition, to Theorem 3.3, it is also worth proving the following

Theorem 3.5. If p is a seminorm on X and F is a seminorm generating relation for X such that
\[F_p \subset F \subset \tilde{F}_p, \]
then $p = p_F$.

Proof. If $x \in X$, then for each $r \in \mathbb{R}_+$, with $p(x) < r$, we have
\[x \in B_r^p(0) = F_p(r) \subset F(r). \]
Therefore, $r \in F^{-1}(x)$, and thus
\[p_F(x) = \inf \{ F^{-1}(x) \} \leq r. \]
Hence, by letting $r \to p(x)$, we can infer that $p_F(x) \leq p(x)$.

On the other hand, by the definition of $p_F(x)$, for each $\varepsilon > 0$ there exists an $r \in F^{-1}(x)$ such that $r < p_F(x) + \varepsilon$. Hence, we can see that
\[x \in F(r) \subset \tilde{F}_p(r) = \bar{B}_r^p(0). \]
Therefore, $p(x) \leq r < p_F(x) + \varepsilon$, and thus $p(x) \leq p_F(x)$ is also true.

Remark 3.6. In particular, by Theorem 3.5, we have $p = p_{\bar{F}_r} = p_{\sigma_r}$ for every seminorm p on X.

Moreover, as an immediate consequence of Example 2.1 and Theorem 3.5, we can also state

Corollary 3.7. If p is a seminorm on X and A is an absorbing, balanced, convex subset of X such that
\[B_1^p(0) \subset A \subset \bar{B}_1^p(0), \]
then $p = p_A$.

4. Some further properties of the Minkowski functionals

Theorem 4.1. If F is a seminorm generating relation for X, then the following assertions are equivalent:

1. p_F is a norm;
2. $\bigcap_{r \in \mathbb{R}_+} F(r) = \{ 0 \}$.

Proof. If $x \in F(r)$, and hence $r \in F^{-1}(x)$ for all $r \in \mathbb{R}_+$, then by the definition of p_F we have $p_F(x) = 0$. Hence, if the assertion (1) holds, it follows that $x = 0$. Therefore, since $0 \in F(r)$ for all $r \in \mathbb{R}_+$, the assertion (2) also holds.

While, if $x \in X$ such that $p_F(x) = 0$, then by the definition of p_F for each $r \in \mathbb{R}_+$ there exists $s \in F^{-1}(x)$ such that $s < r$. Hence, by the monotonicity property of F, it is clear that $x \in F(s) \subset F(r)$. Therefore, if the assertion (2) holds, then $x = 0$, and thus the assertion (1) also holds.
Corollary 4.2. If A is an absorbing, balanced, convex subset of X, then the following assertions are equivalent:

1. p_A is a norm;
2. $\bigcap_{r \in \mathbb{R}_+} rA = \{0\}$.

Remark 4.3. Note that, since A is balanced, we may write $\mathbb{K} \setminus \{0\}$ in place of \mathbb{R}_+ in the assertion (2).

Theorem 4.4. If F is a seminorm generating relation for X, then the following assertions are equivalent:

1. $F = F_{p_F}$;
2. $F(r) = \bigcup_{s \leq r} F(s)$ for all $r \in \mathbb{R}_+$.

Proof. If $r \in \mathbb{R}_+$ and $x \in F(r)$, and the assertion (1) holds, then we have $x \in F_{p_F}(r) = B^{p_F}_r(0)$. Hence, it follows that

$$\inf (F^{-1}(x)) = p_F(x) < r.$$

Therefore, there exists an $s \in F^{-1}(x)$ such that $s < r$. Hence, it follows that $x \in F(s)$. Therefore,

$$F(r) \subset \bigcup_{s \leq r} F(s).$$

Now, since the converse inclusion is immediate from the monotonicity property of F, it is clear that the assertion (2) also holds.

While, if $r \in \mathbb{R}_+$ and $x \in F(x)$, and the assertion (2) holds, then there exists an $s < r$ such that $x \in F(s)$, and hence $s \in F^{-1}(x)$. Therefore,

$$p_F(x) = \inf (F^{-1}(x)) \leq s < r,$$

and hence $x \in B^{p_F}_r(0) = F_{p_F}(r)$. Consequently, we have $F(r) \subset F_{p_F}(r)$. Now, since the converse inclusion is always true by Theorem 3.3, it is clear that the assertion (1) also holds.

Corollary 4.5. If A is an absorbing, balanced, convex subset of X, then the following assertions are equivalent:

1. $A = B^{p_A}_1(0)$;
2. $A = \bigcup_{s \leq 1} sA$.

Theorem 4.6. If F is a seminorm generating relation for X, then the following assertions are equivalent:

1. $F = \tilde{F}_{p_F}$;
2. $F(r) = \bigcap_{s \geq r} F(s)$ for all $r \in \mathbb{R}_+$.

Proof. If $r \in \mathbb{R}_+$, and $x \in X$ such that $x \in F(s)$, i.e., $s \in F^{-1}(x)$ for all $s > r$, then

$$p_F(x) = \inf (F^{-1}(x)) \leq r,$$
and hence \(x \in \tilde{B}_r^p (0) = \tilde{F}_p (r) \). Therefore, if the assertion (1) holds, then we also have \(x \in F (r) \). Consequently,
\[
\bigcap_{s>r} F(s) \subset F(r).
\]

Hence, since the converse inclusion is immediate from the monotonicity property of \(F \), it is clear that the assertion (2) also holds.

While, if \(r \in \mathbb{R}_+ \), and \(x \in \tilde{F}_p (r) \), i.e., \(x \in \tilde{B}_r^p (0) \), then
\[
\inf \left(F^{-1}(x) \right) = p_r(x) \leq r.
\]
Therefore, for each \(s > r \) there exists a \(t \in F^{-1}(x) \) such that \(t < s \). Hence, by the monotonicity property of \(F \), it is clear that \(x \in F(t) \subset F(s) \). Therefore,
\[
\tilde{F}_p (r) \subset \bigcap_{s>r} F(s).
\]

Hence, if the assertion (2) holds, it follows that \(\tilde{F}_p (r) \subset F(r) \). Now, since the converse inclusion is always true by Theorem 3.3, it is clear that the assertion (1) also holds.

Corollary 4.7. If \(A \) is an absorbing, balanced, convex subset of \(X \), then the following assertions are equivalent:

1. \(A = \tilde{B}_1^p (0) \);
2. \(A = \bigcap_{s>1} sA \).

Remark 4.8. The above corollaries are not established in the standard books on functional analysis.

References

Received December 3, 1999.

Institute of Mathematics and Informatics

Lajos Kossuth University

H-4010 Debrecen, Pf. 12

Hungary

E-mail address: szaz@math.klte.hu, turij@dragon.klte.hu