PARALLEL AND TOTALLY GEODESIC HYPERSURFACES
OF SOLVABLE LIE GROUPS

Mehri Nasehi

Abstract. In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.

1. Introduction

Parallel submanifolds are the first important class of submanifolds to study [13]. They play an important role in geometry and general relativity and the study of these submanifolds helps us to enrich our knowledge of the geometry of the ambient spaces.

A submanifold is called parallel if its second fundamental form is covariantly constant and it is called totally geodesic if its second fundamental form vanishes identically. Hence, the extrinsic invariants of parallel submanifolds do not vary from point to point and these submanifold can be considered as a natural extension of totally geodesic submanifolds.

Parallel and totally geodesic surfaces in four dimensional Lorentzian space forms and in pseudo-Riemannian space forms with an arbitrary index and dimension have been classified respectively in [10] and [11]. Also the classification of parallel and totally geodesic hypersurfaces in real space forms of any dimension can be found in [17] and [19].

A natural generalization of spaces of constant curvature are homogeneous spaces. Thus it is interesting to choose these spaces as ambient spaces and classify their parallel and totally geodesic hypersurfaces. Up to our knowledge, this study has been done for the homogeneous spaces with dimension less than 6. In fact the complete classification of parallel and totally geodesic surfaces in all three dimensional Riemannian and Lorentzian homogeneous spaces is given in [4, 7, 8, 14, 15]. Also, parallel hypersurfaces of four dimensional oscillator groups and totally geodesic hypersurfaces of four dimensional generalized symmetric spaces are classified in [9] and [12], respectively. Moreover, the complete classification of parallel and totally
geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five is given in \[18\].

In the present paper, we deal with the problem of classifying parallel and totally geodesic hypersurfaces for a class of solvable Lie groups of arbitrary odd dimension. These Lie groups consist of all matrices of the form

\[
\begin{pmatrix}
e^{u_0} & 0 & \cdots & 0 & x_0 \\
0 & e^{u_1} & \cdots & 0 & x_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & e^{u_n} & x_n \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix},
\]

where \((x_0, x_1, \ldots, x_n, u_1, \ldots, u_n) \in \mathbb{R}^{2n+1}\), \(u_0 = -(u_1 + \cdots + u_n)\) and \(n\) is any integer \(n \geq 1\). Following the works \([5, 6, 16]\) to which we may refer for more details, in \([1]\) we investigated some geometrical properties of these spaces with dimension five in both Riemannian and Lorentzian cases. Then in \([3]\) we generalized this study for an arbitrary odd dimension and in \([2]\) we investigated the Randers metrics of Douglas type on these spaces. Our aim in the present paper is to give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases. Moreover we describe some results of this classification which are related to the number of these hypersurfaces.

2. Curvature properties of the class of solvable Lie groups \(G_n\)

Let us denote this class of solvable Lie groups by \(G_n\) and consider the following left-invariant vector fields on \(G_n\),

\[X_i = e^{u_i} \frac{\partial}{\partial x_i}, \quad i = 0, 1, \ldots, n, \quad U_\alpha = \frac{\partial}{\partial u_\alpha} \quad \alpha = 1, \ldots, n.\]

Following \([2]\), we can equip these spaces by the left-invariant Riemannian metric

\[g = \sum_{i=0}^{n} e^{-2u_i} (dx_i)^2 + \sum_{\alpha=1}^{n} (du_\alpha)^2,
\]

and the left-invariant Lorentzian metric

\[\widehat{g} = -e^{-2u_0} (dx_0)^2 + \sum_{i=1}^{n} e^{-2u_i} (dx_i)^2 + \sum_{\alpha=1}^{n} (du_\alpha)^2.
\]

Then the set \(\{X_0, \ldots, X_n, U_1, \ldots, U_n\}\) with respect to the inner product \(\langle \cdot, \cdot \rangle\) which is induced by the Riemannian metric \(g\) (Lorentzian metric \(\widehat{g}\)) is an orthonormal (pseudo-orthonormal) frame field for the Lie algebra \(\mathfrak{g}_n\) of \(G_n\) and we have

\[[X_0, U_\alpha] = X_0, \quad [X_\alpha, U_\beta] = -\delta_\alpha_\beta X_\alpha \quad \text{and} \quad [X_i, X_j] = [U_\alpha, U_\beta] = 0,\]

where \(\alpha, \beta = 1, \ldots, n\) and \(i, j = 0, 1, \ldots, n\). Also the non-zero Levi-Civita connection components in the Riemannian case are given by

\[\nabla_{X_0} U_\alpha = X_0, \quad \nabla_{X_0} X_0 = -\sum_{\alpha=1}^{n} U_\alpha, \quad \nabla_{X_i} U_\alpha = -\delta_{i\alpha} X_\alpha, \quad \nabla_{X_i} X_i = \delta_{\alpha i} U_\alpha,
\]
and in the Lorentzian case are given by
\[\nabla_{X_0} U_\alpha = X_0, \quad \nabla_{X_0} X_0 = \sum_{\alpha=1}^{n} U_\alpha, \quad \nabla_{X_i} U_\alpha = -\delta_{i\alpha} X_i, \quad \nabla_{X_i} X_i = \delta_{i\alpha} U_\alpha, \]
where \(\alpha, i = 1, \ldots, n \). If we adopt the following sign conventions for the curvature tensor field \(R \),
\[R(X, Y) = \nabla_{[X,Y]} - [\nabla_X, \nabla_Y] \quad \text{and} \quad R_{XYZW} = \langle R(X, Y) Z, W \rangle, \]
where \(X, Y, Z \) and \(W \) are left-invariant vector fields on \(G_n \), then the non-zero curvature components in the Riemannian case are
\[R_{X_0u_i, x_0u_j} = -R_{x_0u_i, u_j} = R_{x_0, u_i, x_0} = -1, \quad i, j = 1, \ldots, n \]
and the ones obtained by these components using the symmetries of the curvature tensor. Also the non-zero curvature components in the Lorentzian case are
\[R_{X_0u_i, x_0u_j} = R_{x_0u_i, u_j} = R_{x_0, u_i, x_0} = 1, \quad i, j = 1, \ldots, n \]
and the ones implied by them using the symmetries of the curvature tensor.

3. Parallel and totally geodesic hypersurfaces of \(G_n \)

Let \(F: M^{2n} \rightarrow N^{2n+1} \) be an isometric immersion of pseudo-Riemannian manifolds \((M, \langle , \rangle) \) and \((N, \langle , \rangle). \) Denote by \(\nabla^M \) and \(\nabla \) the Levi-Civita connections of \(M \) and \(N \) and by \(\xi \) a normal vector field on the hypersurface \(M \) with \(\langle \xi, \xi \rangle = \varepsilon \), where \(\varepsilon = \{1, -1\} \). Let us define the shape operator \(S \) by \(SX = -\nabla_X \xi \) and identify vector fields tangent to \(M \) with their images under \(dF \). Then the formula of Gauss is given by
\[\nabla_X Y = \nabla_X^M Y + h(X, Y)\xi, \]
where \(X \) and \(Y \) are vector fields tangent to \(M \) and \(h \) is the second fundamental form which is defined by \(h(X, Y) = \varepsilon \langle SX, Y \rangle \). If \(R \) is the curvature tensor of the ambient space \(N \), then the equation of Codazzi can be described by
\[\langle R(X, Y) Z, \xi \rangle = \varepsilon \left(\nabla^M h)(X, Y, Z) - \nabla^M h)(X, Y, Z) \right), \]
where \(X, Y, Z \) and \(W \) are vector fields tangent to \(M \) and \(\nabla^M h \) is defined by
\[(\nabla^M h)(X, Y, Z) = X(h(Y, Z)) - h(\nabla^M h)(Y, Z) - h(Y, \nabla^M h)(Z). \]
The hypersurface \(M \) is said to be a totally geodesic hypersurface in \(N \), if \(h = 0 \) and it is said to be a parallel hypersurface in \(N \), if \(\nabla^M h = 0 \).

In order to classify parallel hypersurfaces of the class of solvable Lie groups \(G_n \), we prove the following result.

Theorem 3.1. Let \(F: M^{2n} \rightarrow G_n \) be a parallel hypersurface of the class of solvable Riemannian Lie groups \((G_n, g) \) (Lorentzian Lie groups \((G_n, \bar{g}) \)). Also let \(\xi \) be a unit (\(\varepsilon \)-unit) normal vector field on \(M \) and \(\{X_0, \ldots, U_n\} \) be an (pseudo-)orthonormal frame field on \(G_n \). Then \(\xi \) has one of the following forms

Case (a): \(\xi = \pm X_0 \),
Case (b): \(\xi = \pm X_r, \) where \(r \in \{1, \ldots, n\} \),
Case (c): \(\xi = \pm U_r, \) where \(r \in \{1, \ldots, n\} \).
Here we apply (7) to obtain the acceptable forms of

\[\xi = \sum_{i=0}^{n} K_i X_i + \sum_{i=1}^{n} K_{n+i} U_i, \]

where \(K_i : U \subseteq M \to \mathbb{R} \) are some functions. Then the following vector fields, with respect to the Riemannian metric \(g \) (Lorentzian metric \(\hat{g} \)) are tangent to the hypersurface:

\[
\begin{align*}
\text{Riemannian} & & \text{Lorentzian} \\
X_{i0} &= K_i X_0 - K_0 X_i, & X_{i0} &= K_i X_0 + K_0 X_i, & i &= 1, \ldots, n, \\
X_{i1} &= K_i X_1 - K_1 X_i, & X_{i1} &= K_i X_1 - K_1 X_i, & i &= 2, \ldots, n, \\
\vdots & & \vdots \\
X_{i(n-1)} &= K_i X_{n-1} - K_{n-1} X_i, & X_{i(n-1)} &= K_i X_{n-1} - K_{n-1} X_t, & i &= n, \\
Y_{i0} &= K_{n+i} X_0 - K_0 U_t, & Y_{i0} &= K_{n+i} X_0 + K_0 U_t, & t &= 1, \ldots, n, \\
Y_{i1} &= K_{n+i} X_1 - K_1 U_t, & Y_{i1} &= K_{n+i} X_1 - K_1 U_t, & t &= 1, \ldots, n, \\
\vdots & & \vdots \\
Y_{in} &= K_{n+i} X_n - K_n U_t, & Y_{in} &= K_{n+i} X_n - K_n U_t, & t &= 1, \ldots, n, \\
Z_{j1} &= K_{p+j} U_1 - K_p U_{1+j}, & Z_{j1} &= K_{p+j} U_1 - K_p U_{1+j}, & j &= 1, \ldots, n-1, \\
Z_{j2} &= K_{q+j} U_2 - K_q U_{2+j}, & Z_{j2} &= K_{q+j} U_2 - K_q U_{2+j}, & j &= 1, \ldots, n-2, \\
\vdots & & \vdots \\
Z_{jn} &= K_{2n} U_{n-1} - K_{n-1} U_n, & Z_{jn} &= K_{2n} U_{n-1} - K_{n-1} U_n, & j &= 1.
\end{align*}
\]

Since \(M \) is parallel in \(G_n \), we have \(\nabla^M h = 0 \). Thus by the equation (5) we have

\[
\langle R(X_{ik}, Y_{it}) Z_{jm}, \xi \rangle = 0,
\]

where \(X_{ik}, Y_{il} \) and \(Z_{jm} \) are among the vector fields which are given in the system (6). Here we apply (7) to obtain the acceptable forms of \(\xi \) for the Riemannian and Lorentzian cases as follows.

In the Riemannian case

We will consider the following two cases, namely \(K_0 = 0 \) and \(K_0 \neq 0 \).

Case 1: \(K_0 \neq 0 \). In this case from \(0 = \langle R(X_{i0}, X_{j0}) X_{10}, \xi \rangle = K_0^2 K_j \) where \(j = 2, \ldots, n \) we have \(K_2 = \cdots = K_n = 0 \). Thus by \(0 = \langle R(X_{i0}, X_{20}) X_{21}, \xi \rangle = -K_0^2 (K_1^2 + K_2^2) \) we obtain that \(K_0^2 K_1^2 = 0 \) which gives us \(K_1 = 0 \). Also since the condition

\[
0 = \langle R(X_{i0}, Y_{i0}) X_{i0}, \xi \rangle = K_i^2 K_0 \left(\sum_{i=1}^{n} K_{n+i} + K_{n+i} \right) + 2 K_0^3 K_{n+i},
\]

where \(i = t = 1, \ldots, n \) is equivalent to \(2 K_0^3 K_{n+t} = 0 \), we have \(K_{n+1} = \cdots = K_{2n} = 0 \). Thus the condition \(\langle \xi, \xi \rangle = 1 \) gives us \(\xi = \pm X_0 \).
Case 2: $K_0 = 0$. In this case we will consider the following two subcases $K_1 = 0$ and $K_1 \neq 0$.

Case 2.1: $K_1 \neq 0$. In this case from $0 = \langle R(X_{i1}, Y_{t1})X_{i1}, \xi \rangle = K_1^3K_{n+1}$ and $0 = \langle R(X_{i1}, Y_{11})Y_{11}, \xi \rangle = K_1K_1(K_{n+1}^2 + K_2^2)$, where $i = t = 2, \ldots, n$, we obtain that $K_2 = \ldots = K_n = K_{n+2} = \ldots = K_{2n} = 0$. Also by considering these solutions and using

$$0 = \langle R(Y_{10}, Y_{11})Y_{10}, \xi \rangle = K_{n+1}^2 \left(K_1K_{n+1} + K_1 \sum_{i=1}^{n} K_{n+i} \right),$$

we have $2K_1K_{n+1}^3 = 0$ which gives us $K_{n+1} = 0$. Thus by $\langle \xi, \xi \rangle = 1$ we have $\xi = \pm X_1$.

Case 2.2: $K_1 = 0$. In this case we will consider the following two subcases $K_2 \neq 0$ and $K_2 = 0$.

Case 2.2.1: $K_2 \neq 0$. In this case from $0 = \langle R(X_{i2}, Y_{t2})X_{i2}, \xi \rangle = K_1^2K_{n+i}$ and $0 = \langle R(X_{i2}, Y_{22})Y_{22}, \xi \rangle = K_1K_2(K_{n+2}^2 + K_2^2)$, where $i = t = 3, \ldots, n$, we obtain that $K_3 = \ldots = K_n = K_{n+3} = \ldots = K_{2n} = 0$. Also from

$$0 = \langle R(Y_{t0}, Y_{t2})Y_{t0}, \xi \rangle = K_2K_{n+t}^2 \left(K_{n+t} + \sum_{i=1}^{n} K_{n+i} \right), \quad t = 1, 2,$$

we obtain that $K_{n+1} = K_{n+2} = 0$. Thus by $\langle \xi, \xi \rangle = 1$ we have $\xi = \pm X_2$.

Case 2.2.2: $K_2 = 0$. In this case we will distinguish between the cases $K_3 \neq 0$ and $K_3 = 0$.

Case 2.2.2.1: $K_3 \neq 0$. In this case from $0 = \langle R(X_{i3}, Y_{t3})X_{i3}, \xi \rangle = -K_3^3K_{n+t}$ and $0 = \langle R(X_{i3}, Y_{33})Y_{33}, \xi \rangle = K_1K_3(K_{n+3}^2 + K_3^2)$, where $i = t = 4, \ldots, n$ we obtain that $K_4 = \ldots = K_n = K_{n+4} = \ldots = K_{2n} = 0$. Also from

$$0 = \langle R(Y_{t0}, Y_{t3})Y_{t0}, \xi \rangle = K_3K_{n+t}^2 \left(K_{n+t} + \sum_{i=1}^{n} K_{n+i} \right),$$

where $t = 1, 2, 3$ we have $K_{n+1} = K_{n+2} = K_{n+3} = 0$. Thus $\langle \xi, \xi \rangle = 1$ gives us $\xi = \pm X_3$.

Case 2.2.2.2: $K_3 = 0$. In this case we will consider the two subcases $K_4 \neq 0$ and $K_4 = 0$.

By a similar argument from the cases, case $\overbrace{2\ldots2.1}, \ldots$, case $\overbrace{2\ldots2.1}$, respectively we obtain $\xi = \pm X_4, \ldots, \xi = \pm X_n$.

Case $\overbrace{2\ldots2.2}$: $K_n = 0$. In this case we will distinguish between the cases $K_{n+1} \neq 0$ and $K_{n+1} = 0$.

Case $\overbrace{2\ldots2.1}$: $K_{n+1} \neq 0$. In this case if we consider the condition $0 = \langle R(Y_{11}, Z_{j1})Y_{11}, \xi \rangle = -K_1K_{n+1+j}(K_1^2 + K_2^2)$, where $j = 1, \cdots, n-1$ (since in this case $K_1 = \cdots = K_n = 0$), then we obtain that $K_{n+2} = \cdots = K_{2n} = 0$. Thus by $\langle \xi, \xi \rangle = 1$ we have $\xi = \pm U_1$.
Theorem 3.2. Riemannian Lie groups which yields the contradiction

Case 2.\ldots.2: \(K_{n+1} = 0 \). In this case we will consider the following two subcases \(K_{n+2} = 0 \) and \(K_{n+2} \neq 0 \).

\(n+2 \) times

Case 2.\ldots.2: \(K_{n+2} \neq 0 \). In this case if we consider the condition

\[0 = \langle R(Y_{22}, Z_{j2})Y_{22}, \xi \rangle = -K_{n+2}K_{n+2+j}(K^2_{n+2} + K^2_{j2}) \]

where \(j = 1, \ldots, n - 2 \) we obtain that \(K_{n+3} = \ldots = K_{2n} = 0 \). Thus \(\xi = \pm U_2 \).

\(n+2 \) times

Case 2.\ldots.2: \(K_{n+2} = 0 \). In this case we will consider the two subcases \(K_{n+3} = 0 \) and \(K_{n+3} \neq 0 \).

\(2n \) times

Case 2.\ldots.2: \(K_{2n} = 0 \). In this case since \(K_0 = \ldots = K_{2n} = 0 \), we have \(\xi = 0 \) which yields the contradiction \(\langle \xi, \xi \rangle = 0 \neq 1 \).

In the Lorentzian case

If we use \(X_{ik}, Y_{it} \) and \(Z_{jm} \) which are among the vector fields which are given in the second column of the system (6), then by a straightforward computation similar to the Riemannian case we have the result.

By the Theorem 3.1 we can obtain a complete classification of parallel hypersurfaces of these homogeneous spaces in both Riemannian and Lorentzian cases as follows.

Theorem 3.2. Let \(F: M^{2n} \to G_n \) be a parallel hypersurface of the class of solvable Riemannian Lie groups \((G_n, g)\) (Lorentzian Lie groups \((G_n, \tilde{g})\)). Then there exist local coordinates \((w_1, \ldots, w_{2n})\) on \(M^{2n} \), such that this immersion with respect to these coordinates, up to isometrics, is given by one of the following expressions:

\[
F(w_1, \ldots, w_{2n}) = (0, e^w_1 w_1, e^w_2 w_2, \ldots, e^w_{2n} w_n, w_{n+1}, \ldots, w_{2n}),
\]

\[
F(w_1, \ldots, w_{2n}) = (e^{-\left(\sum_{i=1}^{n} w_{n+i}\right)} w_1, 0, e^w_1 w_1, e^w_2 w_2, \ldots, e^w_{2n} w_n, w_{n+1}, w_{n+2} \ldots, w_{2n}),
\]

\[
\vdots
\]

\[
F(w_1, \ldots, w_{2n}) = (e^{-\left(\sum_{i=1}^{n} w_{n+i}\right)} w_1, e^w_1 w_1, e^w_2 w_2, \ldots, e^w_{n+r-1} w_r, 0, e^w_{n+r} w_{r+1}, \ldots, e^w_{2n} w_n, w_{n+1}, \ldots, w_{2n}),
\]

\[
\vdots
\]

\[
F(w_1, \ldots, w_{2n}) = (e^{-\left(\sum_{i=1}^{n} w_{n+i}\right)} w_1, e^w_1 w_1, e^w_2 w_2, \ldots, e^w_{2n-1} w_n, 0, w_{n+1}, \ldots, w_{2n}),
\]
Parallel and Totally Geodesic Hypersurfaces

\[F(w_1, \ldots, w_{2n}) = \left(e^{-(\sum_{i=1}^{n} w_{i+1})} w_1, e^{w_{n+1}} w_2, \ldots, e^{w_{2n}} w_{n+1}, w_{n+2}, \ldots, w_{n+r}, \right. \]

\[\left. 0, w_{n+r+1}, \ldots, w_{2n} \right) , \]

\[\vdots \]

\[F(w_1, \ldots, w_{2n}) = \left(e^{-(\sum_{i=1}^{n} w_{i+1})} w_1, e^{w_{n+1}} w_2, \ldots, e^{w_{2n}} w_{n+1}, w_{n+2}, \ldots, w_{2n}, 0 \right) . \]

Conversely, all these hypersurfaces are parallel.

Proof. Assume that \(M \) is a parallel hypersurface in \(G_n \). Then in both Riemannian and Lorentzian cases, \(\xi \) has one of the forms which are given in the cases (a), (b) and (c) of the Theorem 3.1. Let us start with the case (a), i.e. \(\xi = \pm X_0 \). Then the following vector fields span the tangent space to \(M \) at each point

\[Y_1 = X_1, \quad \ldots, \quad Y_n = X_n, \quad Y_{n+1} = U_1, \quad \ldots, \quad Y_{2n} = U_n. \]

Also, by using the equations (2) and (8), we see that the non-zero connection components are

\[\nabla_{Y_i} Y_i = Y_{n+i}, \quad \nabla_{Y_i} Y_{n+i} = -Y_i, \quad i = 1, \ldots, n. \]

Then by (9) and the Gauss formula (4), the second fundamental form is determined by

\[h(Y_k, Y_l) = 0, \quad k, l \in \{1, \ldots, 2n\} . \]

Thus \(\nabla^M h = 0 \) and the hypersurface is parallel. In order to obtain this hypersurface we put \(\partial w_i = Y_i, \) where \(i = 1, \ldots, 2n \) and denote by \(F: M^{2n} \to G_n: (w_1, \ldots, w_{2n}) \mapsto (F_1(w_1, \ldots, w_4), \ldots, F_{2n+1}(w_1, \ldots, w_{2n})) \) the immersion of the hypersurface. Thus by (8) we obtain

\[\left(\partial w_1 F_1, \ldots, \partial w_1 F_{2n+1} \right) = \left(0, e^{w_{n+1}}, 0, \ldots, 0 \right), \]

\[\vdots \]

\[\left(\partial w_n F_1, \ldots, \partial w_n F_{2n+1} \right) = \left(0, \ldots, 0, e^{w_{2n}}, 0, \ldots, 0 \right), \]

\[\left(\partial w_{n+1} F_1, \ldots, \partial w_{n+1} F_{2n+1} \right) = \left(0, \ldots, 0, 1, 0, \ldots, 0 \right), \]

\[\vdots \]

\[\left(\partial w_{2n} F_1, \ldots, \partial w_{2n} F_{2n+1} \right) = \left(0, \ldots, 0, 1 \right) . \]

Then the general solution of the system (10) is given by

\[F_1 = a_1, \quad F_2 = e^{w_{n+1}} w_1 + a_2, \quad \ldots, \quad F_{n+1} = e^{w_{2n}} w_n + a_{n+1}, \]

\[F_{n+2} = w_{n+1} + a_{n+2}, \quad \ldots, \quad F_{2n+1} = w_{2n} + a_{2n+1}, \]

where \(a_1, \ldots, a_{2n+1} \) are real constants and give us the immersion which is isometric with the first immersion of the theorem.
Let us consider the case (b), i.e. \(\xi = \pm X_r \), where \(r \in \{1, \ldots, n\} \). Then the following vector fields span the tangent space to \(M \) at each point.

\[
Y_0 = X_0, \quad Y_1 = X_1, \quad Y_2 = X_2, \quad \ldots, \quad Y_{r-1} = X_{r-1},
\]
\[
Y_{r+1} = X_{r+1}, \quad \ldots \quad Y_n = X_n, \quad Y_{n+1} = U_1, \quad \ldots, \quad Y_{2n} = U_n.
\]

From the equations \((2)\) and \((11)\) we obtain

\[
\nabla Y_0 Y_0 = -\left(\sum_{i=1}^{n} Y_{n+i} \right), \quad \nabla Y_0 Y_{n+j} = Y_0, \quad \nabla Y_i Y_{n+i} = -Y_i, \quad \nabla Y_i Y_i = Y_{n+i},
\]

where \(i \neq r, \ i = j = 1, \ldots, n \) and the remaining connection components are zero. Therefore from \((12)\) and the Gauss formula \((4)\), the second fundamental form is given by \(h(Y_k, Y_l) = 0 \), where \(k, l \in \{0, \ldots, r-1, r+1, \ldots, 2n\} \). Then the hypersurface is parallel and if we put \(\partial w_{i+1} = Y_i \) where \(i = 0, \ldots, r-1 \) and put \(\partial w_i = Y_i \) where \(i = r+1, \ldots, 2n \), then we obtain

\[
(\partial_{w_1} F_1, \ldots, \partial_{w_1} F_{2n+1}) = \left(e^{-\left(\sum_{i=1}^{n} w_{n+i} \right)}, 0, \ldots, 0 \right),
\]
\[
(\partial_{w_2} F_1, \ldots, \partial_{w_2} F_{2n+1}) = \left(0, e^{w_{n+1}}, 0, \ldots, 0 \right),
\]
\[
\vdots
\]
\[
(\partial_{w_{r-1}} F_1, \ldots, \partial_{w_{r-1}} F_{2n+1}) = \left(0, \ldots, 0, e^{w_{n+r-2}}, 0, \ldots, 0 \right),
\]
\[
(\partial_{w_r} F_1, \ldots, \partial_{w_r} F_{2n+1}) = \left(0, \ldots, 0, e^{w_{n+r-1}}, 0, \ldots, 0 \right),
\]
\[
\vdots
\]
\[
(\partial_{w_n} F_1, \ldots, \partial_{w_n} F_{2n+1}) = \left(0, \ldots, 0, e^{w_{2n}}, 0, \ldots, 0 \right),
\]
\[
(\partial_{w_{n+1}} F_1, \ldots, \partial_{w_{n+1}} F_{2n+1}) = \left(0, \ldots, 0, 1, 0, \ldots, 0 \right),
\]
\[
\vdots
\]
\[
(\partial_{w_{2n}} F_1, \ldots, \partial_{w_{2n}} F_{2n+1}) = \left(0, \ldots, 0, 1 \right).
\]
Theorem 3.3. Let $F: M^{2n} \to G_n$ be a totally geodesic hypersurface of the class of solvable Riemannian Lie groups (G_n, g) (Lorentzian Lie groups (G_n, \tilde{g})). Then there exist local coordinates (w_1, \ldots, w_{2n}) on M^{2n} such that this immersion with respect to these coordinates, up to isometries, is given by one of the following

$$F_1 = e^{-\left(\sum_{i=1}^{n} w_{n+i}\right)} w_1 + b_1,$$

$$F_{r-1} = e^{w_{n+r-2} w_{r-1} + b_{r-1}},$$

$$F_{r+2} = e^{w_{n+r+1} w_{r+1} + b_{r+2}},$$

$$F_{n+2} = w_{n+1} + b_{n+2},$$

where b_1, \ldots, b_{2n+1} are real constants and give us the immersions which are isometric with the immersions given in the cases (2), \ldots, (n+1) of the theorem.

Finally we consider the case (c), where $\xi = \pm U_r$, with $r \in \{1, \ldots, n\}$. Then the following vector fields span the tangent space to M at each point

$$Y_0 = X_0, Y_1 = X_1, \ldots, Y_n = X_n, Y_{n+1} = U_1, \ldots, Y_{n+r-1} = U_{r-1},$$

$$Y_{n+r+1} = U_{r+1}, \ldots, Y_{2n} = U_n,$$

By a direct computation, using (2) and (13), we obtain the following non-zero connection components

$$\nabla_{Y_0} Y_0 = -\left(\sum_{i=1, i \neq r}^{n} Y_{n+i} \right) - \xi,$$

$$\nabla_{Y_0} Y_{n+i} = Y_0, \quad \nabla_{Y_i} Y_{n+i} = -Y_i,$$

$$\nabla_{Y_r} Y_i = Y_{n+i}, \quad \nabla_{Y_i} Y_r = \xi, \quad r \neq i, \quad i = 1, \ldots, n.$$

Thus from (14) and the Gauss formula (4) we can see that the second fundamental form is determined by $h(Y_k, Y_l) = C$, where $k, l \in \{0, \ldots, n+r-1, n+r+1, \ldots, 2n\}$ and C is a real constant. Hence, the hypersurface is parallel and if we put $\partial_{w_{r+1}} = Y_i$ where $i = 0, \ldots, n + r - 1$ and put $\partial_{w_i} = Y_i$ where $i = n + r + 1, \ldots, n$, then by some computations similar to the cases (a) and (b) we obtain

$$F_1 = e^{-\left(\sum_{i=1}^{n} w_{n+i}\right)} w_1 + c_1,$$

$$F_{n+1} = e^{w_{2n} w_{n+1} + c_{n+1}},$$

$$F_{n+r} = w_{n+r} + c_{n+r},$$

$$F_{n+r+2} = w_{n+r+1} + c_{n+r+2},$$

where c_1, \ldots, c_n are real constants and give us the immersions which are isometric with the immersions given in the cases $(n+2), \ldots, (2n+1)$ of the theorem.

The converse of theorem can be obtained by a straightforward computation. A similar argument holds for the Lorentzian case.

Since every totally geodesic hypersurface is parallel, Theorem 3.2 gives us the following result.

Theorem 3.3. Let $F: M^{2n} \to G_n$ be a totally geodesic hypersurface of the class of solvable Riemannian Lie groups (G_n, g) (Lorentzian Lie groups (G_n, \tilde{g})). Then there exist local coordinates (w_1, \ldots, w_{2n}) on M^{2n} such that this immersion with respect to these coordinates, up to isometries, is given by one of the following
expressions:

\[F(w_1, \ldots, w_{2n}) = (0, e^{w_{n+1}} w_1, e^{w_{n+2}} w_2, \ldots, e^{w_{2n}} w_n, w_{n+1}, \ldots, w_{2n}) , \]

\[F(w_1, \ldots, w_{2n}) = \left(e^{-\left(\sum_{i=1}^{n} w_{n+i} \right)} w_1, 0, e^{w_{n+2}} w_2, \ldots, e^{w_{2n}} w_n, w_{n+1}, \ldots, w_{2n} \right) , \]

\[\vdots \]

\[F(w_1, \ldots, w_{2n}) = \left(e^{-\left(\sum_{i=1}^{n} w_{n+i} \right)} w_1, e^{w_{n+1}} w_2, \ldots, e^{w_{n+r-1}} w_r, 0, e^{w_{n+r+1}} w_{r+1}, \ldots, e^{w_{2n}} w_n, w_{n+1}, \ldots, w_{2n} \right) , \]

\[\vdots \]

\[F(w_1, \ldots, w_{2n}) = \left(e^{-\left(\sum_{i=1}^{n} w_{n+i} \right)} w_1, e^{w_{n+1}} w_2, \ldots, e^{w_{2n-1}} w_n, 0, w_{n+1}, \ldots, w_{2n} \right) , \]

Conversely, these hypersurfaces are totally geodesic.

Proof. Assume that \(M \) is a totally geodesic hypersurface in \(G_n \). Then it is sufficient to choose the hypersurfaces which are obtained in the Theorem 3.2 such that for them the second fundamental form vanishes identically. Since in the case that \(\xi = \pm U_r \), where \(r \in \{1, \ldots, n\} \) we obtain that \(h(Y_r, Y_r) = 1 \neq 0 \), where \(Y_r \) is given in (13). Then the acceptable immersions are the ones which are given in the cases (1), \(\ldots \), (n + 1) of the Theorem 3.2. The converse can be verified by a straightforward computation. The Lorentzian case can be proved by a similar argument.

As a consequence of Theorems 3.2 and 3.3 we have the following result.

Corollary 3.4. Let \((G_n, g) ((G_n, \bar{g})) \) be the class of solvable Riemannian (Lorentzian) Lie groups. If we denote by \(\dim G_n \) the dimension of \(G_n \), then up to isometries we obtain the following results.

(I) These spaces always admit an odd number of parallel hypersurfaces which is equal to the \(\dim G_n \).

(II) These spaces can admit an even or odd number of totally geodesic hypersurfaces which is equal to \(\frac{\dim G_n + 1}{2} \).

Proof. Assume that \(F : M^{2n} \to G_n \) is an isometric immersion of the class of solvable Lie groups. Then up to isometries parallel hypersurfaces can be expressed by \(2n + 1 = \dim G_n \) cases which are given in the Theorem 3.2. Also from the Theorem 3.3 it follows that \(n + 1 = \frac{\dim G_n + 1}{2} \) of them are totally geodesic. These give us the results given in (I) and (II).
References

Department of Mathematical Sciences,
Isfahan University of Technology,
Isfahan, 84156-83111, Iran
E-mail: m.nasehi@math.iut.ac.ir nasehi.mehri@gmail.com