GLOBAL BEHAVIOR OF THE DIFFERENCE EQUATION

\[x_{n+1} = \frac{ax_{n-3}}{b+cx_{n-1}x_{n-3}}, \]

RAAFAT ABO-ZEID

Abstract.

In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation

\[x_{n+1} = \frac{ax_{n-3}}{b+cx_{n-1}x_{n-3}}, \quad n = 0, 1, \ldots \]

where \(a, b, c\) are positive real numbers and the initial conditions \(x_{-3}, x_{-2}, x_{-1}, x_0\) are real numbers.

1. Introduction

Difference equations have played an important role in analysis of mathematical models of biology, physics and engineering. Recently, there has been a great interest in studying properties of nonlinear and rational difference equations. One can see [3, 5, 8, 9, 11, 12, 14, 15, 18] and the references therein.

In [4], the authors discussed the global behavior of the difference equation

\[x_{n+1} = \frac{Ax_{n-2r-1}}{B+Cx_{n-2l}x_{n-2k}}, \quad n = 0, 1, \ldots \]

where \(A, B, C\) are nonnegative real numbers and \(r, l, k\) are nonnegative integers such that \(l \leq k\) and \(r \leq k\).

In [2] we have discussed global asymptotic stability of the difference equation

\[x_{n+1} = \frac{A+Bx_{n-1}}{C+Dx_n^2}, \quad n = 0, 1, \ldots \]

where \(A, B\) are nonnegative real numbers and \(C, D > 0\).

We have also discussed in [1] the global behavior of the solutions of the difference equation

\[x_{n+1} = \frac{Bx_{n-2k-1}}{C+D\prod_{i=1}^{k} x_{n-2i}}, \quad n = 0, 1, \ldots \]

Key words and phrases: difference equation, periodic solution, convergence.

Received February 23, 2014, revised November 2014. Editor O. Došlý.

DOI: 10.5817/AM2015-2-77
In [17], D. Simsek et al. introduced the solution of the difference equation
\[x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}}, \quad n = 0, 1, \ldots \]
where \(x_{-3}, x_{-2}, x_{-1}, x_0 \in (0, \infty) \).

Also in [16], D. Simsek et al. introduced the solution of the difference equation
\[x_{n+1} = \frac{x_{n-5}}{1 + x_{n-1}x_{n-3}}, \quad n = 0, 1, \ldots \]
with positive initial conditions.

R. Karatas et al. [10] discussed the positive solutions and the attractivity of the difference equation
\[x_{n+1} = \frac{x_{n-5}}{1 + x_{n-2}x_{n-5}}, \quad n = 0, 1, \ldots \]
where the initial conditions are nonnegative real numbers.

In [6], E.M. Elsayed discussed the solutions of the difference equation
\[x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}x_{n-3}}, \quad n = 0, 1, \ldots \]
where the initial conditions are nonzero real numbers.

In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation
\[x_{n+1} = \frac{ax_{n-3}}{b + cx_{n-1}x_{n-3}}, \quad n = 0, 1, \ldots \]
where \(a, b, c \) are positive real numbers and the initial conditions \(x_{-3}, x_{-2}, x_{-1}, x_0 \) are real numbers.

2. Solution of equation (1.1)

In this section, we establish the solutions of equation (1.1).

From equation (1.1), we can write
\[x_{2n+1} = \frac{ax_{2n-3}}{b + cx_{2n-1}x_{2n-3}}, \quad n = 0, 1, \ldots \]
(2.1)
\[x_{2n+2} = \frac{ax_{2n-2}}{b + cx_{2n}x_{2n-2}}, \quad n = 0, 1, \ldots \]
(2.2)

Using the substitution \(y_{2n-1} = \frac{1}{x_{2n-1}x_{2n-3}} \), equation (2.1) is reduced to the linear nonhomogeneous difference equation
\[y_{2n+1} = \frac{b}{a} y_{2n-1} + \frac{c}{a}, \quad y_{-1} = \frac{1}{x_{-1}x_{-3}}, \quad n = 0, 1, \ldots \]
(2.3)
Note that for the backward orbits, the product reciprocals \(v_{2k-1} = \frac{1}{x_{2k-1}x_{2k-3}} \) satisfy the equation

\[
v_{2k+1} = \frac{a}{b} v_{2k-1} - \frac{c}{b}, \quad v_{-1} = \frac{1}{x_{-1}x_{-3}} = -\frac{c}{b}, \quad k = 0, 1, \ldots
\]

Therefore,

\[
x_{2n-1}x_{2n-3} = -\frac{b}{c} \sum_{r=0}^{n} (\frac{b}{c})^r.
\]

By induction on \(n \) we can show that for any \(n \in \mathbb{N} \), if \(x_{2n-1}x_{2n-3} = -\frac{b}{c} \sum_{r=0}^{n} (\frac{b}{c})^r \), then \(x_{-1}x_{-3} = -\frac{b}{c} \).

The same argument can be done for equation (2.2) and will be omitted.

Now we are ready to give the following lemma.

Lemma 2.1. The forbidden set \(F \) of equation (1.1) is

\[
F = \bigcup_{n=0}^{\infty} \{ (u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-3} = -\left(\frac{b}{c} \sum_{r=0}^{n} (\frac{b}{c})^r \right) \frac{1}{u_{-1}} \} \cup \bigcup_{m=0}^{\infty} \{ (u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-2} = -\left(\frac{b}{c} \sum_{r=0}^{m} (\frac{b}{c})^r \right) \frac{1}{u_0} \}.
\]

Clear that the forbidden set \(F \) is a sequence of hyperbolas contained entirely in the interiors of the 2\(^{nd} \) and the 4\(^{th} \) quadrant of the planes \(u_0u_{-2} \) and \(u_{-1}u_{-3} \) of the four dimensional Euclidean space

\[
\mathbb{R}^4 = \{ (u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-i} \in \mathbb{R}, \ i = 0, 1, 2, 3 \}.
\]

That is the forbidden set is a sequence of hyperbolas contained entirely in the set

\[
\{ (u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-1}u_{-3} < 0 \} \cup \{ (u_0, u_{-1}, u_{-2}, u_{-3}) : u_0u_{-2} < 0 \}.
\]

We define \(\alpha_i = x_{-2+i}x_{-4+i}, i = 1, 2, \ldots \)

Theorem 2.2. Let \(x_{-3}, x_{-2}, x_{-1} \) and \(x_0 \) be real numbers such that \((x_0, x_{-1}, x_{-2}, x_{-3}) \notin F \). If \(a \neq b \), then the solution \(\{ x_{n} \}_{n=0}^{\infty} \) of equation (1.1) is

\[
x_n = \begin{cases}
 x_{-3} \prod_{j=0}^{n-1} \left(\frac{1}{a} \right)^{2j+1} \theta_1 + c, & n = 1, 5, 9, \ldots \\
 x_{-2} \prod_{j=0}^{n-2} \left(\frac{1}{a} \right)^{2j+1} \theta_2 + c, & n = 2, 6, 10, \ldots \\
 x_{-1} \prod_{j=0}^{n-3} \left(\frac{1}{a} \right)^{2j+1} \theta_3 + c, & n = 3, 7, 11, \ldots \\
 x_0 \prod_{j=0}^{n-4} \left(\frac{1}{a} \right)^{2j+1} \theta_4 + c, & n = 4, 8, 12, \ldots
\end{cases}
\]

where \(\theta_i = \frac{a-b-c\alpha_i}{\alpha_i}, \alpha_i = x_{-2+i}x_{-4+i}, \) and \(i = 1, 2, \ldots \)

Proof. We can write the given solution as

\[
x_{4m+1} = x_{-3} \prod_{j=0}^{m} \left(\frac{1}{a} \right)^{2j+1} \theta_1 + c, \quad x_{4m+2} = x_{-2} \prod_{j=0}^{m} \left(\frac{1}{a} \right)^{2j+1} \theta_2 + c, \\
x_{4m+3} = x_{-1} \prod_{j=0}^{m} \left(\frac{1}{a} \right)^{2j+1} \theta_3 + c, \quad x_{4m+4} = x_0 \prod_{j=0}^{m} \left(\frac{1}{a} \right)^{2j+1} \theta_4 + c, \quad m = 0, 1, \ldots
\]
It is easy to check the result when $m = 0$. Suppose that the result is true for $m > 0$.

Then

$$x_{4(m+1)+1} = \frac{ax_{4m+1}}{b + cx_{4m+1}x_{4m+3}} = \frac{ax_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c}{b + cx_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c} x_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c$$

$$= \frac{ax_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c}{b + cx_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c} x_{3} \prod_{j=0}^{m} \left(\frac{b}{a} \right)^{2j} \theta_{1} + c$$

Similarly we can show that

$$x_{4(m+1)+2} = x_{2} \prod_{j=0}^{m+1} \left(\frac{b}{a} \right)^{2j} \theta_{2} + c$$

$$x_{4(m+1)+3} = x_{3} \prod_{j=0}^{m+1} \left(\frac{b}{a} \right)^{2j+1} \theta_{1} + c$$

and

$$x_{4(m+1)+4} = x_{0} \prod_{j=0}^{m+1} \left(\frac{b}{a} \right)^{2j+2} \theta_{2} + c$$

This completes the proof. \[\square\]
3. Global Behavior of Equation (1.1)

In this section, we investigate the global behavior of equation (1.1) with \(a \neq b \), using the explicit formula of its solution.

We can write the solution of equation (1.1) as

\[
x_{4m+2t+i} = x_{-4+2t+i} \prod_{j=0}^{m} \beta(j, t, i),
\]

where \(\beta(j, t, i) = \frac{(\frac{b}{a})^{2j+t} \theta_i + c}{(\frac{b}{a})^{2j+t+1} \theta_i + c} \), \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \).

In the following theorem, suppose that \(a > b \) for all \(i \in \{1, 2\} \).

Theorem 3.1. Let \(\{x_n\}_{n=-3}^{\infty} \) be a solution of equation (1.1) such that \((x_0, x_{-1}, x_{-2}, x_{-3}) \notin F \). Then the following statements are true.

1. If \(a < b \), then \(\{x_n\}_{n=-3}^{\infty} \) converges to 0.
2. If \(a > b \), then \(\{x_n\}_{n=-3}^{\infty} \) converges to a period-4 solution.

Proof.

1. If \(a < b \), then \(\beta(j, t, i) \) converges to \(\frac{a}{b} < 1 \) as \(j \to \infty \), for all \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \). So, for every pair \((t, i) \in \{0, 1\} \times \{1, 2\} \) we have for a given \(0 < \epsilon < 1 \) that, there exists \(j_0(t, i) \in \mathbb{N} \) such that, \(|\beta(j, t, i)| < \epsilon \) for all \(j \geq j_0(t, i) \). If we set \(j_0 = \max_{0 \leq t \leq 1, 1 \leq i \leq 2} j_0(t, i) \), then for all \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \) we get

\[
|x_{4m+2t+i}| = |x_{-4+2t+i}| \prod_{j=0}^{m} \beta(j, t, i) |
\]

\[
= |x_{-4+2t+i}| \prod_{j=0}^{j_0-1} \beta(j, t, i) | \prod_{j=j_0}^{m} \beta(j, t, i) |
\]

\[
< |x_{-4+2t+i}| \prod_{j=0}^{j_0-1} \beta(j, t, i) |e^{m-j_0}|
\]

As \(m \) tends to infinity, the solution \(\{x_n\}_{n=-3}^{\infty} \) converges to 0.

2. If \(a > b \), then \(\beta(j, t, i) \to 1 \) as \(j \to \infty \), \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \). This implies that, for every pair \((t, i) \in \{0, 1\} \times \{1, 2\} \) there exists \(j_1(t, i) \in \mathbb{N} \) such that, \(\beta(j, t, i) > 0 \) for all \(j \geq j_1(t, i) \). If we set \(j_1 = \max_{0 \leq t \leq 1, 1 \leq i \leq 2} j_1(t, i) \), then for all \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \) we get

\[
x_{4m+2t+i} = x_{-4+2t+i} \prod_{j=0}^{m} \beta(j, t, i)
\]

\[
= x_{-4+2t+i} \prod_{j=0}^{j_1-1} \beta(j, t, i) \exp \left(\sum_{j=j_1}^{m} \ln(\beta(j, t, i)) \right).
\]
We shall test the convergence of the series \(\sum_{j=j_1}^{\infty} |\ln (\beta(j, t, i))| \).
Since for all \(t \in \{0, 1\} \) and \(i \in \{1, 2\} \) we have
\[
\lim_{j \to \infty} \left| \frac{\ln (\beta(j + 1, t, i))}{\ln (\beta(j, t, i))} \right| = \frac{0}{0},
\]
using L’Hospital’s rule we obtain
\[
\lim_{j \to \infty} \left| \frac{\ln (\beta(j + 1, t, i))}{\ln (\beta(j, t, i))} \right| = \left(\frac{b}{a} \right)^2 < 1.
\]
It follows from the ratio test that the series \(\sum_{j=j_1}^{\infty} |\ln (\beta(j, t, i))| \) is convergent.
This ensures that there are four positive real numbers \(\nu_{ti}, \ t \in \{0, 1\} \) and \(i \in \{1, 2\} \) such that
\[
\lim_{m \to \infty} x_{4m + 2t + i} = \nu_{ti} , \quad t \in \{0, 1\} \quad \text{and} \quad i \in \{1, 2\}
\]
where
\[
\nu_{ti} = x_{-4 + 2t + i} \prod_{j=0}^{\infty} \left(\frac{b}{a} \right)^{2j + t} \theta_i + c , \quad t \in \{0, 1\} \quad \text{and} \quad i \in \{1, 2\}.
\]

\[
\text{Fig. 1: } x_{n+1} = \frac{2x_{n-3}}{3 + x_{n-1}x_{n-3}} \quad \text{Fig. 2: } x_{n+1} = \frac{3x_{n-3}}{1 + 2x_{n-1}x_{n-3}}
\]

Example 1. Figure 1 shows that if \(a = 2, b = 3, c = 1 \) (\(a < b \)), then the solution \(\{x_n\}_{n=-3}^{\infty} \) of equation (1.1) with initial conditions \(x_{-3} = 0.2, x_{-2} = 2, x_{-1} = -2 \) and \(x_0 = 0.4 \) converges to zero.

Example 2. Figure 2 shows that if \(a = 3, b = 1, c = 2 \) (\(a > b \)), then the solution \(\{x_n\}_{n=-3}^{\infty} \) of equation (1.1) with initial conditions \(x_{-3} = 0.2, x_{-2} = 2, x_{-1} = -2 \) and \(x_0 = 0.4 \) converges to a period-4 solution.

4. **Case \(a = b = c \)**

In this section, we investigate the behavior of the solution of the difference equation
\[
(4.1) \quad x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}x_{n-3}} , \quad n = 0, 1, \ldots
\]
Lemma 4.1. The forbidden set G of equation (4.1) is

$$G = \bigcup_{n=0}^{\infty} \{(u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-3} = -\left(\frac{1}{n+1}\right) \frac{1}{u_{-1}} \} \cup \bigcup_{m=0}^{\infty} \{(u_0, u_{-1}, u_{-2}, u_{-3}) : u_{-2} = -(\frac{1}{m+1}) \frac{1}{u_0}\}.$$

Theorem 4.2. Let x_{-3}, x_{-2}, x_{-1} and x_0 be real numbers such that $(x_0, x_{-1}, x_{-2}, x_{-3}) \notin G$. Then the solution $\{x_n\}_{n=-3}^{\infty}$ of equation (4.1) is

$$x_n = \begin{cases}
 x_{-3} \prod_{j=0}^{n-1} \frac{1+(2j)\alpha_1}{1+(2j+1)\alpha_1}, & n = 1, 5, 9, \ldots \\
 x_{-2} \prod_{j=0}^{n-2} \frac{1+(2j)\alpha_2}{1+(2j+1)\alpha_2}, & n = 2, 6, 10, \ldots \\
 x_{-1} \prod_{j=0}^{n-3} \frac{1+(2j+1)\alpha_1}{1+(2j+2)\alpha_1}, & n = 3, 7, 11, \ldots \\
 x_0 \prod_{j=0}^{n-4} \frac{1+(2j+1)\alpha_2}{1+(2j+2)\alpha_2}, & n = 4, 8, 12, \ldots
\end{cases}$$

(4.2)

Proof. The proof is similar to that of Theorem 2.2 and will be omitted. \qed

We can write the solution of equation (4.1) as

$$x_{4m+2t+i} = x_{-4+2t+i} \prod_{j=0}^{m} \gamma(j, t, i),$$

where $\gamma(j, t, i) = \frac{1+(2j+t)\alpha_i}{1+(2j+t+1)\alpha_i}$, $t \in \{0, 1\}$ and $i \in \{1, 2\}$.

In the following theorem, suppose that $\alpha_i \neq 0$ for all $i \in \{1, 2\}$.

Theorem 4.3. Let $\{x_n\}_{n=-3}^{\infty}$ be a solution of equation (4.1) such that $(x_0, x_{-1}, x_{-2}, x_{-3}) \notin G$. Then $\{x_n\}_{n=-3}^{\infty}$ converges to 0.

Proof. It is clear that $\gamma(j, t, i) \to 1$ as $j \to \infty$, $t \in \{0, 1\}$ and $i \in \{1, 2\}$. This implies that, for every pair $(t, i) \in \{0, 1\} \times \{1, 2\}$ there exists $j_2(t, i) \in \mathbb{N}$ such that, $\gamma(j, t, i) > 0$ for all $j \geq j_2(t, i)$. If we set $j_2 = \max_{0 \leq i \leq 1, 1 \leq i \leq 2} j_2(t, i)$, then for all $t \in \{0, 1\}$ and $i \in \{1, 2\}$ we get

$$x_{4m+2t+i} = x_{-4+2t+i} \prod_{j=0}^{m} \gamma(j, t, i)$$

$$= x_{-4+2t+i} \prod_{j=0}^{j_2-1} \gamma(j, t, i) \exp \left(- \sum_{j=j_2}^{m} \ln \frac{1}{\gamma(j, t, i)} \right).$$

We shall show that $\sum_{j=j_2}^{\infty} \ln \frac{1}{\gamma(j, t, i)} = \sum_{j=j_2}^{\infty} \ln \frac{1+(2j+t+1)\alpha_i}{1+(2j+t)\alpha_i} = \infty$, by considering the series $\sum_{j=j_2}^{\infty} \frac{\alpha_i}{1+\alpha_i(2j+t)}$. As

$$\lim_{j \to \infty} \frac{1}{\gamma(j, t, i)} = \lim_{j \to \infty} \frac{\ln ((1 + \alpha_i(2j + t + 1))/(1 + \alpha_i(2j + t)))}{\alpha_i/(1 + \alpha_i(2j + t))} = 1,$$
using the limit comparison test, we get \(\sum_{j=j_2}^{\infty} \ln \frac{1}{\gamma(j, t, i)} = \infty\). Therefore,

\[
x_{4m+2t+i} = x_{-4+2t+i} \prod_{j=0}^{j_2-1} \gamma(j, t, i) \exp \left(-\sum_{j=j_2}^{m} \ln \frac{1}{\gamma(j, t, i)} \right),
\]

converges to zero as \(m \to \infty\). □

References

[6] Elsayed, E.M., On the difference equation \(x_{n+1} = \frac{x_{n-5}}{1+x_{n-2}x_{n-5}}\), Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664.
[10] Karatas, R., Cinar, C., Simsek, D., On the positive solution of the difference equation \(x_{n+1} = \frac{x_{n-5}}{1+x_{n-2}x_{n-5}}\), Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500.
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I., On the recursive sequence \(x_{n+1} = \frac{x_{n-5}}{1+x_{n-2}x_{n-5}}\), Int. J. Pure Appl. Math. 28 (1) (2006), 117–124.
[17] Simsek, D., Cinar, C., Yalcinkaya, I., On the recursive sequence \(x_{n+1} = \frac{x_{n-3}}{1+x_{n-1}}\), Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480.

Department of Basic Science,

The Valley Higher Institute of Engineering & Technology,

Cairo, Egypt

E-mail: abuzead73@yahoo.com