DOUBLE SEQUENCE SPACES OVER n-NORMED SPACES

KULDIP RAJ AND SUNIL K. SHARMA

Abstract. In this paper, we define some classes of double sequences over n-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.

1. Introduction and preliminaries

By \(w'' \) we shall denote the class of all double sequences. The initial works on double sequences is found in Bromwich [2]. Later on it was studied by Hardy [18], Moricz [23], Moricz and Rhoades [24], Tripathy (32, 31), Başarir and Sonalcan [1] and many others. Hardy [18] introduced the notion of regular convergence for double sequences. The concept of paranormed sequences was studied by Nakano [25] and Simmons [30] at initial stage. Later on it was studied by many others. The concept of 2-normed spaces was initially developed by Gähler [14] in the mid of 1960’s while that of \(n \)-normed spaces one can see in Misiak [22]. Since, then many others have studied this concept and obtained various results, see Gunawan ([15], [16]) and Gunawan and Mashadi [17]. The notion of difference sequence spaces was introduced by Kizmaz [20], who studied the difference sequence spaces \(l_\infty(\Delta), c(\Delta) \) and \(c_0(\Delta) \). The notion was further generalized by Et and Çolak [13] by introducing the spaces \(l_\infty(\Delta^n), c(\Delta^n) \) and \(c_0(\Delta^n) \). Let \(w \) be the space of all complex or real sequences \(x = (x_k) \) and let \(m, s \) be non-negative integers, then for \(Z = l_\infty, c, c_0 \) we have sequence spaces

\[
Z(\Delta^m_s) = \{ x = (x_k) \in w : (\Delta^m_s x_k) \in Z \},
\]

where \(\Delta^m_s x = (\Delta^m_s x_k) = (\Delta^{m-1}_s x_k - \Delta^{m-1}_s x_{k+1}) \) and \(\Delta^0_s x_k = x_k \) for all \(k \in \mathbb{N} \), which is equivalent to the following binomial representation

\[
\Delta^m_s x_k = \sum_{v=0}^{m} (-1)^v \binom{m}{v} x_{k+sv} \quad \text{(see [35])}.
\]

Taking \(s = 1 \), we get the spaces which were studied by Et and Çolak [13]. Taking \(m = s = 1 \), we get the spaces which were introduced and studied by Kizmaz [20].

2010 Mathematics Subject Classification: primary 40A05; secondary 40C05, 40D05.
Key words and phrases: paranorm space, Orlicz function, solid, monotone, double sequences, \(n \)-normed space.
Received June 19, 2013, revised February 2014. Editor V. Müller.
DOI: 10.5817/AM2014-2-65
Similarly, we can define difference operators on double sequence as:

\[\Delta a_{ij} = (a_{ij} - a_{i,j+1}) - (a_{i+1,j} - a_{i+1,j+1}) = a_{ij} - a_{i,j+1} - a_{i+1,j} + a_{i+1,j+1}. \]

An Orlicz function \(M : [0, \infty) \to [0, \infty) \) is a continuous, non-decreasing and convex function such that \(M(0) = 0 \), \(M(x) > 0 \) for \(x > 0 \) and \(M(x) \to \infty \) as \(x \to \infty \). Lindenstrauss and Tzafriri [21] used the idea of Orlicz function to define the following sequence space,

\[\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\} \]

which is called as an Orlicz sequence space. Also \(\ell_M \) is a Banach space with the norm

\[\|(x_k)\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}. \]

Also, it was shown in [21] that every Orlicz sequence space \(\ell_M \) contains a subspace isomorphic to \(\ell_p(p \geq 1) \). An Orlicz function \(M \) satisfies \(\Delta_2 \)-condition if and only if for any constant \(L > 1 \) there exists a constant \(K(L) \) such that \(M(Lu) \leq K(L)M(u) \) for all values of \(u \geq 0 \). An Orlicz function \(M \) can always be represented in the following integral form

\[M(x) = \int_0^x \eta(t) \, dt \]

where \(\eta \) is known as the kernel of \(M \), is right differentiable for \(t \geq 0 \), \(\eta(0) = 0 \), \(\eta(t) > 0 \), \(\eta \) is non-decreasing and \(\eta(t) \to \infty \) as \(t \to \infty \). Throughout, a double sequence is denoted by \(ar = \langle a_{ij} \rangle \).

A double sequence space \(E \) is said to be solid if \(\langle a_{ij}a_{ij} \rangle \in E \) whenever \(\langle a_{ij} \rangle \in E \) and for all double sequences \(\langle a_{ij} \rangle \) of scalars with \(|a_{ij}| \leq 1 \), for all \(i, j \in \mathbb{N} \).

Let \(n \in \mathbb{N} \) and \(X \) be a linear space over the field \(\mathbb{R} \) of reals of dimension \(d \), where \(d \geq n \geq 2 \). A real valued function \(\| \cdot, \ldots, \cdot \| \) on \(X^n \) satisfying the following four conditions:

1. \(\|x_1, x_2, \ldots, x_n\| = 0 \) if and only if \(x_1, x_2, \ldots, x_n \) are linearly dependent in \(X \);
2. \(\|x_1, x_2, \ldots, x_n\| \) is invariant under permutation;
3. \(\|\alpha x_1, x_2, \ldots, x_n\| = |\alpha| \|x_1, x_2, \ldots, x_n\| \) for any \(\alpha \in \mathbb{R} \),
4. \(\|x + x', x_2, \ldots, x_n\| \leq \|x, x_2, \ldots, x_n\| + \|x', x_2, \ldots, x_n\| \)

is called an n-norm on \(X \) and the pair \((X, \| \cdot, \ldots, \cdot \|) \) is called a n-normed space over the field \(\mathbb{R} \).

For example, we may take \(X = \mathbb{R}^n \) being equipped with the n-norm \(\|x_1, x_2, \ldots, x_n\|_E = \text{the volume of the n-dimensional parallelepiped spanned by the vectors } x_1, x_2, \ldots, x_n \) which may be given explicitly by the formula

\[\|x_1, x_2, \ldots, x_n\|_E = |\det(x_{ij})|, \]
where \(x_i = (x_{i1}, x_{i2}, \ldots, x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \ldots, n \). Let \((X, \|\cdot\|, \ldots, \|\cdot\|)\) be an \(n \)-normed space of dimension \(d \geq n \geq 2 \) and \(\{a_1, a_2, \ldots, a_n\} \) be linearly independent set in \(X \). Then the following function \(\|\cdot, \ldots, \|_\infty \) on \(X^{n-1} \) defined by

\[
\|x_1, x_2, \ldots, x_{n-1}\|_\infty = \max\{\|x_1, x_2, \ldots, x_{n-1}, a_i\| : i = 1, 2, \ldots, n\}
\]
defines an \((n-1)\)-norm on \(X \) with respect to \(\{a_1, a_2, \ldots, a_n\} \).

A sequence \((x_k)\) in a \(n \)-normed space \((X, \|\cdot\|, \ldots, \|\cdot\|)\) is said to converge to some \(L \in X \) if

\[
\lim_{k \to \infty} \|x_k - L, z_1, \ldots, z_{n-1}\| = 0 \quad \text{for every} \quad z_1, \ldots, z_{n-1} \in X.
\]

A sequence \((x_k)\) in a \(n \)-normed space \((X, \|\cdot\|, \ldots, \|\cdot\|)\) is said to be Cauchy if

\[
\lim_{k,p \to \infty} \|x_k - x_p, z_1, \ldots, z_{n-1}\| = 0 \quad \text{for every} \quad z_1, \ldots, z_{n-1} \in X.
\]

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(n \)-norm. Any complete \(n \)-normed space is said to be \(n \)-Banach space. For more details about \(n \)-normed spaces (see [3, 5, 6, 8, 11, 12]) and references therein.

Let \(X \) be a linear metric space. A function \(p: X \to \mathbb{R} \) is called paranorm, if

1. \(p(x) \geq 0 \), for all \(x \in X \),
2. \(p(-x) = p(x) \), for all \(x \in X \),
3. \(p(x + y) \leq p(x) + p(y) \), for all \(x, y \in X \),
4. if \((\lambda_n)\) is a sequence of scalars with \(\lambda_n \to \lambda \) as \(n \to \infty \) and \((x_n)\) is a sequence of vectors with \(p(x_n - x) \to 0 \) as \(n \to \infty \), then \(p(\lambda_n x_n - \lambda x) \to 0 \) as \(n \to \infty \).

A paranorm \(p \) for which \(p(x) = 0 \) implies \(x = 0 \) is called total paranorm and the pair \((X, p)\) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [36] Theorem 10.4.2, P-183). For more details about sequence spaces (see [4, 7, 9, 10, 20, 27, 28, 29, 33, 34]) and references therein.

The following inequality will be used throughout the paper. Let \(p = (p_k) \) be a sequence of positive real numbers with \(0 \leq p_k \leq \sup p_k = G, K = \max(1, 2^{G-1}) \) then

\[
(1.1) \quad |a_k + b_k|^{p_k} \leq K\{ |a_k|^{p_k} + |b_k|^{p_k} \}
\]

for all \(k \) and \(a_k, b_k \in \mathbb{C} \). Also \(|a|^{p_k} \leq \max(1, |a|^G) \) for all \(a \in \mathbb{C} \).

Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be a double sequence of strictly positive real numbers and \((X, \|\cdot\|, \ldots, \|\cdot\|)\) be a real linear \(n \)-normed space. Then we define the following classes of sequences:

\[
W''(M, \Delta, p, \|\cdot\|, \ldots, \|\cdot\|) = \{ (a_{ij}) \in w'' : \lim_{m,n} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\|\frac{\Delta a_{ij} - L}{\rho}, z_1, \ldots, z_{n-1}\| \right) \right)^{p_{ij}} = 0, \]

for each \(z_1, \ldots, z_{n-1} \in X \), for some \(\rho > 0 \) and \(L > 0 \),
\[W_0''(M, \Delta, p, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \lim_{m,n} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right)^{p_{ij}} = 0, \]
\[\text{for each } z_1, \ldots, z_{n-1} \in X, \text{ for some } \rho > 0 \} \]
\[\text{and} \]
\[W_{\infty}''(M, \Delta, p, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right)^{p_{ij}} < \infty, \]
\[\text{for some } \rho > 0 \}. \]

If we take \(p = (p_{ij}) = 1 \), we get
\[W''(M, \Delta, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \lim_{m,n} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\| \frac{\Delta a_{ij} - L}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right) = 0, \]
\[\text{for each } z_1, \ldots, z_{n-1} \in X, \text{ for some } \rho > 0 \text{ and } L > 0 \}, \]
\[W_0''(M, \Delta, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \lim_{m,n} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right) = 0, \]
\[\text{for each } z_1, \ldots, z_{n-1} \in X, \text{ for some } \rho > 0 \} \]
\[\text{and} \]
\[W_{\infty}''(M, \Delta, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M\left(\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right) < \infty, \]
\[\text{for some } \rho > 0 \}. \]

If we take \(M(x) = x \), we get
\[W''(\Delta, p, \|\cdot\|, \ldots, \|) \]
\[= \{ (a_{ij}) \in w'': \lim_{m,n} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\| \frac{\Delta a_{ij} - L}{\rho}, z_1, \ldots, z_{n-1} \| \right)^{p_{ij}} = 0, \]
\[\text{for each } z_1, \ldots, z_{n-1} \in X, \text{ for some } \rho > 0 \text{ and } L > 0 \}. \]
\[W^{\prime\prime}_0(\Delta, p, \| \cdot , \ldots , \cdot \|) = \{ \langle a_{ij} \rangle \in w'' : \lim_{m,n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \}^{p_{ij}} = 0, \]

for each \(z_1, \ldots, z_{n-1} \in X \), for some \(\rho > 0 \} \]

and

\[W^{\prime\prime}_\infty(\Delta, p, \| \cdot , \ldots , \cdot \|) = \{ \langle a_{ij} \rangle \in w'' : \sup_{m,n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \}^{p_{ij}} < \infty, \]

for some \(\rho > 0 \}. \]

In the present paper we plan to study some topological properties and inclusion relation between the above defined sequence spaces.

2. SOME TOPOLOGICAL PROPERTIES

In this section of the paper we study very interesting properties like linearity, paranorm and some attractive inclusion relation between the spaces \(W''(M, \Delta, p, \| \cdot , \ldots , \cdot \|), W'_0(\Delta, p, \| \cdot , \ldots , \cdot \|) \) and \(W''(\Delta, p, \| \cdot , \ldots , \cdot \|) \).

Theorem 2.1. Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be bounded double sequence of strictly positive real numbers. Then the classes of sequences \(W''(M, \Delta, p, \| \cdot , \ldots , \cdot \|), W'_0(\Delta, p, \| \cdot , \ldots , \cdot \|) \) and \(W''(\Delta, p, \| \cdot , \ldots , \cdot \|) \) are linear spaces over the field of real numbers \(\mathbb{R} \).

Proof. Let \(\langle a_{ij} \rangle, \langle b_{ij} \rangle \in W''(M, \Delta, p, \| \cdot , \ldots , \cdot \|) \) and \(\alpha, \beta \in \mathbb{R} \). Then there exist positive real numbers \(\rho_1 \) and \(\rho_2 \) such that

\[\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[M \left(\frac{\Delta a_{ij}}{\rho_1}, z_1, \ldots, z_{n-1} \right) \right]^{p_{ij}} < \infty \text{ for some } \rho_1 > 0 \]

and

\[\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[M \left(\frac{\Delta b_{ij}}{\rho_2}, z_1, \ldots, z_{n-1} \right) \right]^{p_{ij}} < \infty \text{ for some } \rho_2 > 0. \]

Let \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \(\| \cdot , \ldots , \cdot \| \) is a \(n \)-norm on \(X \) and \(M \) is non-decreasing, convex and so by using inequality (1.1), we have
Theorem 2.2. Let $\langle a_{ij} \rangle$ be a bounded sequence of strictly positive real numbers. The sequence spaces $W''(M, \Delta, p, \|\cdot\|)$, $W'_0''(M, \Delta, p, \|\cdot\|)$ and $W''(M, \Delta, p, \|\cdot\|)$ are paranormed spaces, paranormed by

$$g(\langle a_{ij} \rangle) = \sup_i |a_{i1}| + \sup_j |a_{1j}|$$

$$+ \inf \left\{ \rho \frac{p_{ij}}{\pi} > 0 : \sup_{z_1, \ldots, z_{n-1} \in X} \left(M \left(\left\| \frac{\Delta a_{ij}}{\rho} \right\|, z_1, \ldots, z_{n-1} \right) \right)^{\frac{p_{ij}}{\pi}} \leq 1 \right\},$$

where $H = \max(1, G), G = \sup_{i,j} p_{ij}$.

Proof. Clearly $g(0) = 0, g(-\langle a_{ij} \rangle) = g(\langle a_{ij} \rangle)$.

Let $\langle a_{ij} \rangle, \langle b_{ij} \rangle \in W''(M, \Delta, p, \|\cdot\|)$. Then there exist some $\rho_1, \rho_2 > 0$ such that

$$\sup_{z_1, \ldots, z_{n-1} \in X} \left(M \left(\left\| \frac{\Delta a_{ij}}{\rho_1}, z_1, \ldots, z_{n-1} \right) \right)^{\frac{p_{ij}}{\pi}} \leq 1$$

Thus, we have $\alpha \langle a_{ij} \rangle + \beta \langle b_{ij} \rangle \in W''(M, \Delta, p, \|\cdot\|)$.

Hence $W''(M, \Delta, p, \|\cdot\|)$ is a linear space. Similarly, we can prove $W''(M, \Delta, p, \|\cdot\|)$ and $W'_0''(M, \Delta, p, \|\cdot\|)$ are linear spaces over the field of real numbers \mathbb{R}. \hfill \square
and
\[
\sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta b_{ij}}{\rho_2}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1.
\]

Let \(\rho = \rho_1 + \rho_2 \). Then by using Minkowski’s inequality, we have
\[
\sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta a_{ij} + \Delta b_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta a_{ij}}{\rho_1}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \rho_1 + \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta b_{ij}}{\rho_2}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \rho_2 \leq 1.
\]

Now
\[
g(\langle a_{ij} \rangle + \langle b_{ij} \rangle) = |a_{i1} + b_{i1}| + |a_{1j} + b_{1j}|
\]
\[
+ \inf \left\{ \left(\frac{\rho_1 + \rho_2}{\rho} \right)^{\frac{p_{ij}}{\rho}}, \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta a_{ij} + \Delta b_{ij}}{\rho_1 + \rho_2}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1 \right\}
\]
\[
\leq |a_{i1}| + |b_{i1}| + \inf \left\{ \frac{p_{ij}}{\rho}, \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta a_{ij}}{\rho_1}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1 \right\}
\]
\[
+ |a_{1j}| + |b_{1j}| + \inf \left\{ \frac{p_{ij}}{\rho}, \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta b_{ij}}{\rho_2}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1 \right\}
\]
\[
= g(\langle a_{ij} \rangle) + g(\langle b_{ij} \rangle).
\]

Let \(\lambda \in \mathbb{C} \), then the continuity of the product follows from the following inequality
\[
g(\lambda \langle a_{ij} \rangle) = |\lambda| a_{i1} + |\lambda| b_{i1}|
\]
\[
+ \inf \left\{ \frac{p_{ij}}{\rho}, \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta \lambda a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1 \right\}
\]
\[
= |\lambda| |a_{i1}| + |\lambda| |b_{i1}|
\]
\[
+ \inf \left\{ \left(\frac{|\lambda|}{\rho} \right)^{\frac{p_{ij}}{\rho}}, \sup_{\mathbf{z} \in X} \left(M \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{\rho}} \leq 1 \right\},
\]
where \(\frac{1}{\rho} = \frac{|\lambda|}{\rho} \). This completes the proof of the theorem. \(\square \)

Theorem 2.3. Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be bounded double sequence of strictly positive real numbers. The sequence spaces \(W''(M, \Delta, p, \| \cdot, \cdot \|) \),
\[W'_\infty(M, \Delta, p, ||\cdot||) \text{ and } W'^\infty(M, \Delta, p, ||\cdot||) \] are complete paranormed spaces, paranormed defined by \(g \).

Proof. Let \(\langle a^s_{ij} \rangle \) be a Cauchy sequence in \(W'^\infty(M, \Delta, p, ||\cdot||) \). Then \(g(\langle a^s_{ij} - a^t_{ij} \rangle) \to 0 \) as \(s, t \to \infty \). For a given \(\epsilon > 0 \), choose \(r > 0 \) and \(x_0 > 0 \) be such that \(\frac{\epsilon}{rx_0} > 0 \) and \(M(\frac{rx_0}{2}) \geq 1 \). Now \(g(\langle a^s_{ij} - a^t_{ij} \rangle) \to 0 \) as \(s, t \to \infty \) implies that there exists \(m_0 \in N \) such that
\[
g(\langle a^s_{ij} - a^t_{ij} \rangle) < \frac{\epsilon}{rx_0} \quad \text{for all } s, t \geq m_0.
\]
Thus, we have
\[
sup_i |a^s_{i1} - a^t_{i1}| + sup_j |a^s_{ij} - a^t_{ij}|
+ \inf \left\{ \rho \frac{p_{ij}}{M} : \sup_{z_1, \ldots, z_{n-1} \in X} \left(M\left(\left\| \frac{\Delta a^s_{ij} - \Delta a^t_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right)^{\frac{p_{ij}}{M}} \leq 1 \right\}
< \frac{\epsilon}{rx_0}.
\](2.1)
This shows that \(\langle a^s_{i1} \rangle, \langle a^t_{ij} \rangle \) are Cauchy sequences of real numbers. As the set of real numbers is complete so there exists real numbers \(a_{i1}, a_{ij} \) such that
\[
lim_{s \to \infty} a^s_{i1} = a_{i1}, \quad \lim_{s \to \infty} a^s_{ij} = a_{ij}.
\]
Now from (2.1) we have,
\[
\left(M\left(\left\| \frac{\Delta a^s_{ij} - \Delta a^t_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right) \leq 1
\[
\implies \sup_{i, j} \left(M\left(\left\| \frac{\Delta a^s_{ij} - \Delta a^t_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right) \leq 1 \leq M\left(\frac{rx_0}{2} \right)
\[
\implies \frac{\left\| \left(\Delta a^s_{ij} - \Delta a^t_{ij}, z_1, \ldots, z_{n-1} \right) \right\|}{g(\langle a^s_{ij} - a^t_{ij} \rangle)} \leq \frac{rx_0}{2}
\[
\implies \left\| \left(\Delta a^s_{ij} - \Delta a^t_{ij}, z_1, \ldots, z_{n-1} \right) \right\| < \frac{rx_0}{2}, \quad \frac{\epsilon}{rx_0} = \frac{\epsilon}{2}.
\]
This implies \(\langle \Delta^s_{ij} \rangle \) is a Cauchy sequence of real numbers. Let \(\lim_{s \to \infty} \Delta a^s_{ij} = y_{ij} \) for all \(i, j \in N \). Now \(\Delta a^s_{11} = a^s_{11} - a^s_{12} - a^s_{21} + a^s_{22} \) and so
\[
\lim_{s \to \infty} a^s_{22} = \lim_{s \to \infty} \left(\Delta a^s_{11} - a^s_{12} + a^s_{21} \right) = y_{11} - a_{11} - a_{12} + a_{21}.
\]
Hence \(\lim_{s \to \infty} a^s_{22} \) exists. Proceeding in this way we conclude that \(\lim_{s \to \infty} a^s_{ij} \) exists. Using continuity of \(M \), we have
\[
\lim_{t \to \infty} \sup_{z_1, \ldots, z_{n-1} \in X} \left(M\left(\left\| \frac{\Delta a^s_{ij} - \Delta a^t_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right) \leq 1.
\]
Let \(s \geq m_0 \), then taking infimum of such \(\rho 's \) we have \(g(\langle a^s_{ij} - a_{ij} \rangle) < \epsilon \). Thus \(\langle a^s_{ij} - a_{ij} \rangle \in W'^\infty(M, \Delta, p, ||\cdot||) \). By linearity of the space \(W'^\infty(M, \Delta, p, ||\cdot||) \)
we have \(\langle a_{ij} \rangle \in W''(M, \Delta, p, \|., .\|) \). Hence \(W''(M, \Delta, p, \|., .\|) \) is complete. \(\square \)

Theorem 2.4. Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be bounded double sequence of strictly positive real numbers. Then
(i) \(W''(M, \Delta, p, \|., .\|) \subset W''(M, \Delta, p, \|., .\|) \)
(ii) \(W''_0(M, \Delta, p, \|., .\|) \subset W''(M, \Delta, p, \|., .\|) \).

Proof. The proof is easy so we omit it. \(\square \)

Theorem 2.5. Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be bounded double sequence of strictly positive real numbers. Then the spaces \(W''(M, \Delta, p, \|., .\|) \) and \(W''_0(M, \Delta, p, \|., .\|) \) are nowhere dense subset of \(W''(M, \Delta, p, \|., .\|) \).

Proof. The proof is easy so we omit it. \(\square \)

Theorem 2.6. Let \(M \) be an Orlicz function and \(p = (p_{ij}) \) be bounded double sequence of strictly positive real numbers. Then the following relation holds:
(i) If \(0 < \inf p_{ij} \leq p_{ij} < 1 \), then \(W''(M, \Delta, p, \|., .\|) \subset W''(M, \Delta, p, \|., .\|) \)
(ii) If \(1 < p_{ij} \leq \sup p_{ij} < \infty \), then \(W''(M, \Delta, p, \|., .\|) \subset W''(M, \Delta, p, \|., .\|) \).

Proof. (i) Let \(\langle a_{ij} \rangle \in W''(M, \Delta, p, \|., .\|) \); since \(0 < \inf p_{ij} \leq p_{ij} < 1 \), we have
\[
\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \leq \sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right)^{p_{ij}},
\]
and hence \(\langle a_{ij} \rangle \in W''(M, \Delta, p, \|., .\|) \).

(ii) Let \(p_{ij} > 1 \) for each \((ij) \) and \(\sup p_{ij} < \infty \). Let \(\langle a_{ij} \rangle \in W''(M, \Delta, p, \|., .\|) \).

Then, for each \(0 < \epsilon < 1 \), there exists a positive integer \(N \) such that
\[
\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \leq \epsilon < 1,
\]
for all \(m, n \geq N \). Since
\[
\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right)^{p_{ij}} \leq \sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\left\| \frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right\| \right)^{p_{ij}}.
\]
Hence, \(\Delta a_{ij} \in W''(M, \Delta, p, \|., .\|) \) and this completes the proof. \(\square \)

Theorem 2.7. Let \(M_1 \) and \(M_2 \) be Orlicz functions, then we have
\[
W''(M_1, \Delta, p, \|., .\|) \cap W''(M_2, \Delta, p, \|., .\|) \subseteq W''(M_1 + M_2, \Delta, p, \|., .\|).
\]
Proof. Let \(\langle a_{ij} \rangle \in W'_\infty(M_1, \Delta, p, \| \cdot \|, \ldots, \| \cdot \|) \cap W''_\infty(M_2, \Delta, p, \| \cdot \|, \ldots, \| \cdot \|) \). Then
\[
\lim_{mn} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M_1 \left(\frac{\Delta a_{ij} - L}{\rho_1}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}} = 0, \quad \text{for some } \rho_1 > 0,
\]
for each \(z_1, \ldots, z_{n-1} \in X \)
and
\[
\lim_{mn} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M_2 \left(\frac{\Delta a_{ij} - L}{\rho_2}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}} = 0, \quad \text{for some } \rho_2 > 0,
\]
for each \(z_1, \ldots, z_{n-1} \in X \).

Let \(\rho = \max\{\rho_1, \rho_2\} \). The result follows from the inequality
\[
\sum_{i=1}^{m} \sum_{j=1}^{n} \left((M_1 + M_2) \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}
\]
\[
= \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M_1 \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) + M_2 \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}
\]
\[
\leq K \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M_1 \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}
\]
\[
+ K \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M_2 \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}.
\]

\(\square \)

Theorem 2.8. The sequence space \(W''_\infty(M', A, p, \| \cdot \|, \ldots, \| \cdot \|) \) is solid.

Proof. Let \(\langle a_{ij} \rangle \in W''_\infty(M', \Delta, p, \| \cdot \|, \ldots, \| \cdot \|), \) i.e.
\[
\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}} < \infty.
\]

Let \((\alpha_{ij}) \) be double sequence of scalars such that \(|\alpha_{ij}| \leq 1 \) for all \(i, j \in \mathbb{N} \times \mathbb{N} \). Then we get
\[
\sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M \left(\frac{\Delta a_{ij} \alpha_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}
\]
\[
\leq \sup_{z_1, \ldots, z_{n-1} \in X} \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(M \left(\frac{\Delta a_{ij}}{\rho}, z_1, \ldots, z_{n-1} \right) \right)^{p_{ij}}
\]
and this completes the proof. \(\square \)

Theorem 2.9. The sequence space \(W''_\infty(M, \Delta, p, \| \cdot \|, \ldots, \| \cdot \|) \) is monotone.

Proof. It is obvious. \(\square \)
Acknowledgement. The authors thank the referee for his valuable suggestions that improved the presentation of the paper.

References

