ESTIMATIONS OF NONCONTINUABLE SOLUTIONS
OF SECOND ORDER DIFFERENTIAL EQUATIONS
WITH \(p \)-LAPLACIAN

EVA PEKÁRKOVÁ

ABSTRACT. We study asymptotic properties of solutions for a system of second
differential equations with \(p \)-Laplacian. The main purpose is to investigate
lower estimates of singular solutions of second order differential equations
with \(p \)-Laplacian
\[
(A(t)\Phi_p(y'))' + B(t)g(y') + R(t)f(y) = e(t),
\]
Furthermore, we obtain results for a scalar equation.

1. INTRODUCTION

Consider the differential equation
\[
(1) \quad (A(t)\Phi_p(y'))' + B(t)g(y') + R(t)f(y) = e(t),
\]
where \(p > 0 \), \(A(t) \), \(B(t) \), \(R(t) \) are continuous, matrix-valued function on
\(\mathbb{R}_+ := [0, \infty) \), \(A(t) \) is regular for all \(t \in \mathbb{R}_+ \), \(e: \mathbb{R}_+ \to \mathbb{R}^n \) and \(f, g: \mathbb{R}^n \to \mathbb{R}^n \) are continuous mappings and \(\Phi_p(u) = (|u_1|^{p-1}u_1, \ldots, |u_n|^{p-1}u_n) \) for \(u = (u_1, \ldots, u_n) \in \mathbb{R}^n \). We shall use the norm \(\|u\| = \max_{1 \leq i \leq n} |u_i| \) where \(u = (u_1, \ldots, u_n) \in \mathbb{R}^n \).

Definition 1. A solution \(y \) of (1) defined on \(t \in [0, T) \) is called noncontinuable
or nonextendable if \(T < \infty \) and \(\limsup_{t \to T^-} \|y'(t)\| = \infty \). The solution \(y \) is called
continuable if \(T = \infty \).

Note, that noncontinuable solutions are also called singular of the second kind,
see e.g. [3], [8], [13].

Definition 2. A noncontinuable solution \(y: [0, T] \to \mathbb{R}^n \) is called oscillatory if
there exists an increasing sequence \(\{t_k\}_{k=1}^\infty \) of zeros of \(y \) such that \(\lim_{k \to \infty} t_k = T \);
otherwise \(y \) is called nonoscillatory.

In the last two decades the existence and properties of noncontinuable solutions
of special types of (1) are investigated. For the scalar case, see e.g. [3], [4], [5].
and references therein. In particular, noncontinuable solutions do not exist if f and g satisfy the following conditions
\begin{equation}
|g(x)| \leq |x|^p \quad \text{and} \quad |f(x)| \leq |x|^p \quad \text{for } |x| \text{ large}
\end{equation}
and R is positive. Hence, noncontinuable solutions may exist mainly in the case $|f(x)| \geq |x|^m$ with $m > p$.

As concern the system (1), see papers [7], [14], where sufficient conditions are given for (1) to have continuable solutions.

The scalar equation (1) can be applied in problems of radially symmetric solutions of the p-Laplace differential equation, see e.g. [14]; noncontinuable solutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems), see e.g. [10].

The present paper deals with the estimations from below of norms of a noncontinuable solution of (1) and its derivative. Estimations of solutions are important e.g. in proofs of the existence of such solutions, see e.g. [4], [8] for
\begin{equation}
y^{(n)} = f(t, y, \ldots, y^{(n-1)})
\end{equation}
with $n \geq 2$ and $f \in C^0(\mathbb{R}_+, \mathbb{R}^n)$. For generalized Emden-Fowler equation of the form (3), some estimation are proved in [1].

In the paper [14] the differential equation (1) is studied with the initial conditions
\begin{equation}
y(0) = y_0, \quad y'(0) = y_1
\end{equation}
where $y_0, y_1 \in \mathbb{R}^n$.

We will use results from [7, Theorem 1.2].

Theorem A. Let $m > p$ and there exist positive constants K_1, K_2 such that
\begin{equation}
\|g(u)\| \leq K_1\|u\|^m, \quad \|f(v)\| \leq K_2\|v\|^m, \quad u, v \in \mathbb{R}^n.
\end{equation}
and $\int_0^\infty \|R(s)\| s^m ds < \infty$. Denote
\begin{align*}
A_\infty & := \sup_{0 \leq t < \infty} \|A(t)^{-1}\| < \infty, \quad E_\infty := \sup_{0 \leq t < \infty} \int_0^t \|e(s)\| ds < \infty, \\
R_\infty & := \int_0^\infty \|R(s)\| ds, \quad B_\infty := \int_0^\infty \|B(t)\| dt.
\end{align*}

Let the following conditions be satisfied:
\begin{enumerate}
\item[(i)] Let $m > 1$ and \(\frac{m-p}{p} A_\infty D_1^{\frac{m-p}{p}} \int_0^\infty (K_1\|B(s)\| + 2^{m-1}K_2 s^m\|R(s)\|) ds < 1 \)
for all $t \in \mathbb{R}_+$, where
\(D_1 = A_\infty \\{\|A(0)\Phi_p(y_1)\| + 2^{m-1}K_2\|y_0\|^m R_\infty + E_\infty \} \).
\item[(ii)] Let $m \leq 1$ and \(\frac{2m+1-m-p}{p} A_\infty D_2^{\frac{m-p}{p}} \int_0^\infty (K_1\|B(s)\| + K_2 s^m\|R(s)\|) ds < 1 \)
for all $t \in \mathbb{R}_+$, where
\(D_2 = A_\infty \\{\|A(0)\Phi_p(y_1)\| + 2^m K_1\|y_1\|^m B_\infty + 2^{2m+1}K_2 R_\infty\|y_0\|^m + E_\infty \} \).
\end{enumerate}
Then any solution $y(t)$ of the initial value problem \((1)\), \((4)\) is continuable.

Proof. First let us prove the assertion (i). We will use \([7, \text{Theorem 1.2}]\). From \((5)\) and its proof, it follows that equation (2.3) in \([7]\) may have form

\[
\| \Phi_p(u(t)) \| \leq \| A(t)^{-1} \| \left\{ \| A(0) \Phi_p(y_1) \| + K_1 \int_0^t \| B(s) \| \| u(s) \|^m \, ds \right\} + K_2 \int_0^t \| R(s) \| \| y_0 \| + \int_0^s u(\tau) d\tau \|^m \, ds
\]

where

\[
c = A_\infty \{ \| A(0) \Phi_p(y_1) \| + 2^{m-1} K_2 \| y_0 \| R_\infty \}
\]

and

\[
F(t) = 2^{m-1} K_2 A_\infty \int_t^\infty \| R(s) \| s^{m-1} \, ds + K_1 A_\infty \| B(t) \|.
\]

Now, the results follows from \([7, \text{Theorem 1.2}]\).

The assertion (ii) follows from \([7, \text{Theorem 1.2}]\). □

2. **Main results**

In this chapter we will derive estimates for a noncontinuable solution y on the fixed definition interval $[T, \tau) \subset \mathbb{R}_+$, $\tau < \infty$.

Theorem 1. Let y be a noncontinuable solution of the system \((1)\) on the interval $[T, \tau) \subset \mathbb{R}_+$, $\tau - T \leq 1$,

\[
A_0 := \max_{T \leq t \leq \tau} \| A(t)^{-1} \|, \quad B_0 := \max_{T \leq t \leq \tau} \| B(t) \|, \quad E_0 := \max_{T \leq t \leq \tau} \| e(t) \|, \quad R_0 := \max_{T \leq t \leq \tau} \| R(t) \|, \quad \int_0^\infty \| R(s) \| s^m \, ds < \infty
\]

and let there exist positive constants K_1, K_2 and $m > p$ such that

\[
\| g(u) \| \leq K_1 \| u \|^m, \quad \| f(v) \| \leq K_2 \| v \|^m, \quad u, v \in \mathbb{R}^n.
\]

Then the following assertions hold:

(i) If $p > 1$ and $M = \frac{2^{m+1}(2m+3)}{(m+1)(m+2)}$, then

\[
\| A(t) \Phi_p(y(t)) \| + 2^{m-1} K_2 \| y(t) \|^m R_0 + 2E_0(\tau - t) \geq C_1 (\tau - t)^{-\frac{m}{p-1}}
\]

for $t \in [T, \tau)$, where

\[
C_1 = A_0^{-\frac{m}{m-p}} \left(\frac{m-p}{p} \right)^{-\frac{m}{m-p}} \left[\frac{3}{2} K_1 B_0 + MK_2 R_0 \right]^{-\frac{m}{m-p}}.
\]

(ii) If $p \leq 1$, then

\[
\| A(t) \Phi_p(y(t)) \| + 2^m K_1 B_0 \| y(t) \|^m + 2^{2m+1} K_2 R_0 \| y(t) \|^m
\]

\[
+ 2E_0(\tau - t) \geq C_2 (\tau - t)^{-\frac{m}{p-1}}
\]

for $t \in [T, \tau)$. The constants C_1 and C_2 are determined by p, m, K_1, K_2, and the initial data y_0. □
for \(t \in [T, \tau) \) where
\[
C_2 = 2^{-\frac{p(m+1)}{m-p}} A_0^{-\frac{m}{m-p}} \left(\frac{m-p}{p} \right)^{-\frac{n}{m-p}} \left[\frac{3}{2} K_1 B_0 + MK_2 R_0 \right]^{-\frac{n}{m-p}}.
\]

Proof. First let us prove the assertion (i). Let \(y \) be a singular solution of system (1) on the interval \([T, \tau)\). We take \(t \) to be fixed in the interval \([T, \tau)\) and for the simplicity denote
\[
D = A_0^{-\frac{m}{m-p}} \left(\frac{m-p}{p} \right)^{-\frac{n}{m-p}}.
\]
Assume, by contradiction, that
\[
\|A(t)\Phi_p(y(t))\| + 2^{m-1}K_2\|y(t)\|^m R_0 + 2E_0(\tau - t) < D \left[\frac{3}{2} K_1 B_0 + MK_2 R_0 \right]^{-\frac{n}{m-p}} (\tau - t)^{-\frac{n}{m-p}}.
\]
Together with the Cauchy problem
\[
(A(x)\Phi_p(y'))' + B(x)g(y') + R(x)f(y) = e(x), \quad x \in [t, \tau)
\]
and
\[
y(t) = y_0, \quad y'(t) = y_1
\]
we construct an auxiliary system
\[
(\tilde{A}(s)\Phi_p(z'))' + \tilde{B}(s)g(z') + \tilde{R}(s)f(z) = \tilde{e}(s),
\]
where \(s \in \mathbb{R}_+, z_0, z_1 \in \mathbb{R}^n \), \(\tilde{A}(s), \tilde{B}(s), \tilde{R}(s) \) are continuous, matrix-valued function on \(\mathbb{R}_+ \) given by
\[
\tilde{A}(s) = \begin{cases} A(s + t) & \text{if } 0 \leq s < \tau - t, \\ A(\tau) & \text{if } \tau - t \leq s < \infty, \end{cases}
\]
\[
\tilde{B}(s) = \begin{cases} B(s + t) & \text{if } 0 \leq s < \tau - t, \\ -\frac{B(\tau - t)}{\tau - t} s + 2B(\tau - t) & \text{if } \tau - t \leq s < 2(\tau - t), \\ 0 & \text{if } 2(\tau - t) \leq s < \infty, \end{cases}
\]
\[
\tilde{R}(s) = \begin{cases} R(s + t) & \text{if } 0 \leq s < \tau - t, \\ -\frac{R(\tau - t)}{\tau - t} s + 2R(\tau - t) & \text{if } \tau - t \leq s < 2(\tau - t), \\ 0 & \text{if } 2(\tau - t) \leq s < \infty, \end{cases}
\]
\[
\tilde{e}(s) = \begin{cases} e(s) & \text{if } 0 \leq s < \tau - t, \\ -\frac{e(\tau - t)}{\tau - t} s + 2e(\tau - t) & \text{if } \tau - t \leq s < 2(\tau - t), \\ 0 & \text{if } 2(\tau - t) \leq s < \infty. \end{cases}
\]
We can see that \(\tilde{A}(s) \) is regular for all \(s \in \mathbb{R}_+ \).
Hence, the systems (12) on \([t, \tau]\) and (14) on \([0, \tau - t]\) are equivalent with the change of independent variable \(x - t \rightarrow s\). Let \(z_0 = y(t)\) and \(z_1 = y'(t)\). Then the definitions of the functions \(A, B, \tilde{R}, \tilde{e}\) give that

\[
(20) \quad z(s) = y(s + t), \quad s \in [0, \tau - t) \quad \text{is a noncontinuable solution}
\]
of the system (14), (15) on \([0, \tau - t)\). By the application of Theorem A (i) to the system (14), (15) we will see that every solution \(z\) of the system (14), (15) satisfying

\[
\|A(0)\Phi_p(z_1)\| + 2^{m-1}K_2\|z_0\|^mR_0 + \int_0^\infty \|\tilde{e}(s)\| \, ds
\]

\[
< D\left[\int_0^\infty (K_1\|\tilde{B}(w)\| + 2^{m-1}K_2\|\tilde{R}(w)\|w^m) \, dw\right]^{-\frac{p}{m-p}}
\]

is continuable. Note, that according to (16)-(21) all assumptions of Theorem A are valid. Furthermore, we will show that (11) yields (21).

We estimate the right-hand side of inequality (21):

\[
G := D\left[\int_0^\infty (K_1\|\tilde{B}(w)\| + 2^{m-1}K_2\|\tilde{R}(w)\|w^m) \, dw\right]^{-\frac{p}{m-p}}
\]

\[
\geq D\left[\int_0^{2(\tau-t)} (K_1\|\tilde{B}(w)\| + 2^{m-1}K_2\|\tilde{R}(w)\|w^m) \, dw\right]^{-\frac{p}{m-p}}
\]

\[
\geq D\left\{K_1 \max_{0 \leq s \leq \tau-t} \|B(s + t)\|(\tau - t) + K_2 \int_{\tau-t}^{2(\tau-t)} \left\| - \frac{B(\tau - t)}{\tau - t} w + 2B(\tau - t) \right\| dw
\]

\[
+ 2^{m-1}K_2 \max_{0 \leq s \leq (\tau-t)} \|R(s + t)\| \frac{(\tau - t)^{m+1}}{m + 1} \, dw
\]

\[
+ 2^{m-1}K_2 \int_{\tau-t}^{2(\tau-t)} \left\| - \frac{R(\tau - t)}{\tau - t} w + 2R(\tau - t) \right\| w^m \, dw\right\]^{-\frac{p}{m-p}},
\]

\[
G \geq D\left\{K_1 \max_{T \leq t \leq \tau} \|B(t)\|(\tau - t) + \frac{1}{2}K_1\|B(\tau - t)\|(\tau - t) + M_1K_2 \max_{T \leq t \leq \tau} \|R(t)\|(\tau - t)^{m+1} + M_2K_2\|R(\tau - t)\|(\tau - t)^{m+1}\right\]^{-\frac{p}{m-p}},
\]

where

\[
M_1 = \frac{2^{m-1}}{m + 1} \quad \text{and} \quad M_2 = 2^{m-1}\frac{2^{m+2}(2m + 3) - 3m - 5}{(m + 1)(m + 2)}.
\]

Hence,

\[
(22) \quad G > D\left[\frac{3}{2}K_1B_0(\tau - t) + MK_2R_0(\tau - t)^{m+1}\right]^{-\frac{p}{m-p}}
\]
as \(M > M_1 + M_2\).
As we assume that $\tau - t \leq 1$, inequalities (11) and (22) imply
\[
G > D \left[\frac{3}{2} K_1 B_0 + MK_2 R_0 \right]^{-\frac{p}{m-p}} (\tau - t)^{-\frac{p}{m-p}} = C_1(\tau - t)^{-\frac{p}{m-p}}
\]
\[
\geq ||A(t)\Phi_p(y'(t))|| + 2^{m-1} K_2 ||y(t)||^m R_0 + 2 E_0 (\tau - t)
\]
(23)
\[
\geq ||\tilde{A}(0)\Phi_p(z_1)|| + 2^{m-1} K_2 ||z_0||^m R_0 + \int_0^\infty ||\tilde{e}(s)|| \, ds,
\]
where $C_1 = D \left[\frac{3}{2} K_1 B_0 + MK_2 R_0 \right]^{-\frac{p}{m-p}}$. Hence (21) holds and the solution z of (14) satisfying the initial condition $z(0) = y_0$ and $z'(0) = y_1$ is continuable. This contradiction with (20) proves the statement.

Now we shall prove the assertion (ii). If $p \leq 1$ then the proof is similar, we have to use only Theorem A (ii) instead of Theorem A (i).

Now consider the following special case of equation (1):
(24) \[
(A(t)\Phi_p(y'))' + R(t)f(y) = 0
\]
for all $t \in \mathbb{R}_+$. In this case a better estimation than before can be proved.

Theorem 2. Let $m > p$ and y be a noncontinuable solution of system (24) on interval $[T, \tau) \subset \mathbb{R}_+$. Let there exists a constant $K_2 > 0$ such that
(25) \[
||f(v)|| \leq K_2 ||v||^m, \quad v \in \mathbb{R}^n.
\]
Let R_0 and M to be given by Theorem 1. Then
(26) \[
||A(t)\Phi_p(y'(t))|| + 2^{m+2} K_2 ||y(t)||^m R_0 \geq C_1(\tau - t)^{-\frac{p(m+1)}{m-p}}
\]
where
\[
C_1 = A_0^{-\frac{m}{m-p}} \left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}} [MK_2 R_0]^{-\frac{p}{m-p}} \quad \text{in case } p > 1
\]
and
\[
||A(t)\Phi_p(y')|| + 2^{2m+1} K_2 ||y(t)||^m R_0 \geq C_2(\tau - t)^{-\frac{p(m+1)}{m-p}}
\]
with
\[
C_2 = 2^{-\frac{p(m+1)}{m-p}} A_0^{-\frac{m}{m-p}} \left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}} [MK_2 R_0]^{-\frac{p}{m-p}} \quad \text{in case } p \leq 1.
\]
Proof. Proof is similar the one of the Theorem 1 for $B(t) \equiv 0$ and $e(t) \equiv 0$. Let $p > 1$. We do not use assumption $\tau - t \leq 1$ and we are able to improve an exponent of the estimation (8). The inequality (23) has changed to
(27) \[
G \geq C_1(\tau - t)^{-\frac{p(m+1)}{m-p}}
\]
\[
\geq ||A(t)\Phi_p(y'(t))|| + 2^{m-1} K_2 ||y(t)||^m R_0
\]
\[
\geq ||\tilde{A}(0)\Phi_p(z'(0))|| + 2^{m-1} K_2 ||z(0)||^m R_0,
\]
where $C_1 = D[MK_2 R_0]^{-\frac{p}{(m-p)}}$. If $p \leq 1$, the proof is similar.
3. Applications

In this case we study the scalar differential equation
\[(a(t)\Phi_p(y'))' + r(t)f(y) = 0,\]
where \(p > 0, a(t), r(t)\) are continuous functions on \(\mathbb{R}_+\), \(a(t) > 0\) for \(t \in \mathbb{R}_+,\)
\(f: \mathbb{R} \to \mathbb{R}\) is a continuous mapping and \(\Phi_p(u) = |u|^{p-1}u.\)

Corollary 3. Let \(y\) be a noncontinuable oscillatory solution of equation (28) defined on \([T, \tau]\). Let there exist constants \(K_2 > 0\) and \(m > 0\) such that
\[|f(v)| \leq K_2|v|^m, \quad v \in \mathbb{R}\]
and let \(\{t_k\}_1^\infty\) and \(\{\tau_k\}_1^\infty\) be increasing sequences of all local extrema of the solution \(y\) and of \(y^{[1]} = a(t)\Phi_p(y')\) on \([T, \tau]\), respectively. Then there exist constants \(C_1\) and \(C_2\) such that
\[|y(t_k)| \geq C_1(\tau - t_k)^{-\frac{p(m+1)}{m(m-p)}},\]
and, in the case \(r \neq 0\) on \(\mathbb{R}_+\),
\[|y^{[1]}(\tau_k)| \geq C_2(\tau - \tau_k)^{-\frac{p(m+1)}{m-p}}\]
for \(k \geq 1, 2, \ldots\).

Proof. Let \(m > p\) and \(y\) be an oscillatory noncontinuable solution of equation (28) defined on \([T, \tau]\). An application of Theorem 2 to (28) gives
\[|y^{[1]}(t)| + 2^{2m+1}K_2|y(t)|^m r_0 \geq C(\tau - t)^{-\frac{p(m+1)}{m-p}},\]
where \(C\) is a suitable constant and \(r_0 = \max_{T \leq t \leq \tau} |r(t)|.\) Note that according to (30), \(x(x^{[1]})\) has a local extremum at \(t_0 \in (T, \tau)\) if and only if \(x^{[1]}(t_0) = 0\) \((x(t_0) = 0).\) From this it follows that an accumulation point of zeros of \(x(x^{[1]})\) does not exist in \([T, \tau].\) Otherwise, it holds \(y(\tau) = 0\) and \(y'(\tau) = 0.\) That is in contradiction with (32). If \(\{t_k\}_1^\infty\) is the sequence of all extrema of a solution \(y,\) then \(y'(t_k) = 0,\) i.e. \(y^{[1]}(t_k) = 0.\) We obtain the following estimate for \(y(t_k)\) from (32)
\[|y(t_k)| \geq C_1(\tau - t_k)^{-\frac{p(m+1)}{m(m-p)}},\]
where \(C_1 = C \frac{1}{m} (2^{2m+1}K_2 r_0)^{-\frac{1}{m}}\) and (30) is valid. If \(\{\tau_k\}_1^\infty\) is the sequence of all extrema of \(y^{[1]}(\tau_k),\) then \(y(\tau_k) = 0.\) We obtain the following estimate for \(y^{[1]}(\tau_k)\)
\[|y^{[1]}(\tau_k)| \geq C_2(\tau - \tau_k)^{-\frac{p(m+1)}{m-p}},\]
where \(C_2 = C.\) \(\square\)

Example 1. Consider (28) and (29) with \(m = 2, p = 1.\) Then from Corollary 3 we obtain the following estimates
\[|y(t_k)| \geq C_1(\tau - t_k)^{-\frac{3}{2}}, \quad |y^{[1]}(\tau_k)| \geq C_2(\tau - \tau_k)^{-3},\]
where \(M = \frac{\sqrt{72}}{3}, C_1 = \frac{\sqrt{72}}{448K_2 a_0 r_0}\) and \(C_2 = \frac{3}{448K_2 a_0^2 r_0}.\)
Example 2. Consider (28) and (29) with $m = 3, p = 2$. Then from Corollary 3 we obtain the following estimates

$$|y(t_k)| \geq C_1 (\tau - t_k)^{- \frac{8}{3}}, \quad |y^{[1]}(\tau_k)| \geq C_2 (\tau - \tau_k)^{- 8},$$

where $M = \frac{288}{5}, C_1 = \frac{1}{32K_2r_0} (\frac{10a_0}{9})^\frac{2}{3}$ and $C_2 = (\frac{5a_0}{144K_2r_0})^2$.

The following lemma is a special case of [13 Lemma 11.2].

Lemma 1. Let $y \in C^2[a, b], \; \delta \in (0, \frac{1}{2})$ and $y'(t)y(t) > 0, \; y''(t)y(t) \geq 0$ on $[a, b)$. Then

$$\left(y'(t)y(t) \right)^{\frac{1}{1 - 2\delta}} \geq \omega \int_t^b |y''(s)|^{\delta} |y(s)|^{3\delta - 2} \; ds, \quad t \in [a, b),$$

where $\omega = [(1 - 2\delta) \delta^\delta (1 - \delta)^{1 - \delta}]^{-1}$.

Now, let us turn our attention to nonoscillatory solutions of (28).

Theorem 4. Let $m > p$ and $M \geq 0$ be such that

$$|f(x)| \leq |x|^m \quad \text{for} \quad |x| \geq M.$$

If y is a nonoscillatory noncontinuable solution of (28) defined on $[T, \tau)$, then constants C, C_0 and a left neighborhood J of τ exist such that

$$|y'(t)| \geq C (\tau - t)^{- \frac{p(m+1)}{m(m-p)}}, \quad t \in J.$$

Let, moreover, $m < p + \sqrt{p^2 + p}$. Then

$$|y(t)| \geq C_0 (\tau - t)^{m_1} \quad \text{with} \quad m_1 = \frac{m^2 - 2mp - p}{m(m-p)} < 0.$$

Proof. Let y be a nonoscillatory noncontinuable solutions of (28) defined on $[T, \tau)$. Then there exists $t_0 \in [T, \tau)$ such that $y(t)y^{[1]}(t) > 0$ for $t \in [t_0, \tau)$. Let

$$y(t) > 0 \quad \text{and} \quad y'(t) > 0 \quad \text{for} \quad t \in J := [t_0, \tau);$$

the opposite case $y(t) < 0$ and $y'(t) < 0$ can be studied similarly. As y is noncontinuable, $\lim_{t \to \tau^-} y'(t) = \infty$. Moreover, $\lim_{t \to \infty} y(t) = \infty$ as, otherwise, $y^{[1]}$ and y are bounded on the finite interval J. Hence, there exists $t_1 \in J$ such that $y'(t) \geq 1$ for $[t_1, \tau), y(t) \geq M$ for $t \geq t_1$ and

$$y(t) = y(t_0) + \int_{t_0}^t y'(s) \; ds \leq y(t_0) + \tau y'(t) \leq 2\tau y'(t), \quad t \in [t_1, \tau).$$

Note, that due to $y \geq M$ it is sufficient to suppose (36) instead of (25) for an application of Theorem 2. Hence, Theorem 2 applied to (28), (39) and $y' \geq 1$ imply

$$C_1 (\tau - t)^{- \frac{p(m+1)}{m(m-p)}} \leq a(t)(y'(t))^p + C_2 y^m(t) \leq a(t)(y'(t))^p + C_2 (2\tau)^m (y'(t))^m \leq C_3 (y'(t))^m$$

for $t \geq t_1$. Therefore, $y(t) \geq M$ for $t \geq t_1$ and $|y(t)| \geq C_0 (\tau - t)^{m_1}$ for $t \in J$.
or
\[y'(t) \geq C_4(\tau - t)^{-\frac{p(m+1)}{m(m-p)}} \quad \text{on} \quad [t_1, \tau), \]
where \(C_1, C_2, C_3 \) and \(C_4 \) are positive constants which do not depend on \(y \). Moreover, the integration of (37) yields
\[y(t) = y(t_0) + \int_{t_0}^{t} y'(s) \, ds \geq C \int_{t_0}^{t} (\tau - s)^{-\frac{p(m+1)}{m(m-p)}} \, ds \]
\[\geq \frac{C}{|m_1|} [(\tau - t)^{m_1} - (\tau - t_0)^{m_1}] \geq \frac{C}{2|m_1|} (\tau - t)^{m_1} \]
for \(t \) lying in a left neighbourhood \(I_1 \) of \(\tau \). Hence, (37) and (38) are valid. \(\square \)

Our last application is devoted to the equation
\[y'' = r(t)|y|^m \, \text{sgn} \, y, \tag{40} \]
where \(r \in C^0(\mathbb{R}_+) \), \(m > 1 \).

Theorem 5. Let \(\tau \in (0, \infty), T \in [0, \tau) \) and \(r(t) > 0 \) on \([t, \tau]\).

(i) Then (40) has a nonoscillatory noncontinuable solution which is defined in a left neighbourhood of \(\tau \).

(ii) Let \(y \) be a nonoscillatory noncontinuable solution of (40) defined on \([T, \tau]\). Then constants \(C, C_1, C_2 \) and a left neighbourhood \(I \) of \(\tau \) exist such that
\[|y(t)| \leq C(\tau - t)^{-\frac{2(m+3)}{m+1}} \quad \text{and} \quad |y'(t)| \geq C_1(\tau - t)^{-\frac{m+1}{m(m-1)}}, \quad t \in I. \]
If, moreover, \(m < 1 + \sqrt{2} \), then
\[|y(t)| \leq C_2(\tau - t)^{-m_1} \quad \text{with} \quad m_1 = \frac{m^2 - 2m - 1}{m(m-1)} < 0. \]

Proof. The assertion (i) follows from [2] Theorem 2.

Let us prove the assertion (ii). Let \(y \) be a noncontinuable solution of (40) defined on \([T, \tau]\). According to Theorem 4 and its proof we have \(\lim_{t \to \tau^-} |y(t)| = \infty \) and (37) holds. Hence, suppose that \(t_0 \in [T, \tau) \) is such that
\[y(t) \geq 1 \quad \text{and} \quad y'(t) > 0 \quad \text{on} \quad [t_0, \tau). \]

Furthermore, there exists \(t_1 \in [t_0, \tau) \) such that
\[y(t) = y(t_0) + \int_{t_0}^{t} y'(s) \, ds \leq y(t_0) + y'(t)(\tau - t_0) \leq C_3 y'(t) \tag{41} \]
for \(t \in [t_1, \tau) \) with \(C_3 = 2(\tau - t_0) \). Now, we estimate \(y \) from below. By applying Lemma 1 with \([a, b] = [t_1, \tau)\) and \(\delta = \frac{2}{m+3} \in (0, \frac{1}{2}) \). We have \(\delta m + 3\delta - 2 = 0 \) and
\[C_3 y^{-\frac{2(m+3)}{m+1}} m \geq (y'(t)y(t))^{-\frac{1}{1-2\delta}} \geq \omega \int_{t}^{\tau} (y''(s))^{\delta}(y(s))^{3\delta-2} \, ds \]
\[\geq C_4 \int_{t}^{\tau} y^{\delta m+3\delta-2} \, ds = C_4(\tau - t) \quad \text{on} \quad [t_1, \tau), \tag{42} \]
where $C_4 = \omega \min_{t_0 \leq \sigma \leq \tau} |r(\sigma)|$. From this we have

$$y(t) \leq C(\tau - t)^{-\frac{m-1}{2(m+3)}} \text{ on } [t_1, \tau]$$

with a suitable positive C. The rest of the statement follows from Theorem 4. □

Acknowledgement. The work was supported by the Grant No. 201/08/0469 of the Grant Agency of the Czech Republic.

References

