ON UNICITY OF MEROMORPHIC FUNCTIONS
DUE TO A RESULT OF YANG - HUA

Xiao-Tian Bai and Qi Han

Abstract. This paper studies the unicity of meromorphic (resp. entire) functions of the form $f^n f'$ and obtains the following main result: Let f and g be two non-constant meromorphic (resp. entire) functions, and let $a \in \mathbb{C} \setminus \{0\}$ be a non-zero finite value. Then, the condition that $E_3(a, f^n f') = E_3(a, g^n g')$ implies that either $f = d g$ for some $(n+1)$-th root of unity d, or $f = c_1 e^{cz}$ and $g = c_2 e^{-cz}$ for three non-zero constants c, c_1 and c_2 with $(c_1 c_2)^{n+1} c_2^2 = -a^2$ provided that $n \geq 11$ (resp. $n \geq 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.

1. Introduction and main results

In this paper, a meromorphic function will always mean meromorphic in the open complex plane \mathbb{C}. We adopt the standard notations in the Nevanlinna’s value distribution theory of meromorphic functions such as the characteristic function $T(r, f)$, the proximity function $m(r, f)$ and the counting function $N(r, f)$ (reduced form $\tilde{N}(r, f)$) of poles. For any non-constant meromorphic function f, we denote by $S(r, f)$ any quantity satisfying $S(r, f) = o(T(r, f))$, possibly outside a set of finite linear measure that is not necessarily the same at each occurrence. We refer the reader to Hayman [3], Yang and Yi [8] for more details.

Let f be a non-constant meromorphic function, let $a \in \mathbb{C}$ be a finite value, and let $k \in \mathbb{N} \cup \{+\infty\}$ be a positive integer or infinity. We denote by $E(a, f)$ the set of zeros of $f - a$ and count multiplicities, while by $\tilde{E}(a, f)$ the set of zeros of $f - a$ but ignore multiplicities. Further, we denote by $E_k(a, f)$ the set of zeros of $f - a$ with multiplicities less than or equal to k (counting multiplicities). Obviously, $E(a, f) = E_{+\infty}(a, f)$. Define $E(\infty, f) := E(0, 1/f)$ for the value ∞, and define $\tilde{E}(\infty, f)$ and $E_{+\infty}(\infty, f)$ correspondingly. For $a \in \mathbb{C} \cup \{\infty\}$, we denote by $N_k(r, 1/(f - a))$ the counting function corresponding to the set $E_k(a, f)$, while by $N_{k+1}(r, 1/(f - a))$ the counting function corresponding to the set $E_{k+1}(a, f) := E(a, f) - E_k(a, f)$.

2000 Mathematics Subject Classification: Primary 30D35.
Key words and phrases: entire functions, meromorphic functions, value sharing, unicity.
Received March 23, 2006, revised February 2007.
Also, we denote by $\bar{N}_{k}\left(r, 1/(f-a)\right)$ and $\bar{N}_{k+1}\left(r, 1/(f-a)\right)$ the reduced forms of $N_{k}\left(r, 1/(f-a)\right)$ and $N_{k+1}\left(r, 1/(f-a)\right)$, respectively.

All those foregoing definitions and notations hold well for any small meromorphic function, say, α (i.e., whose characteristic function satisfies $T(r, \alpha) = S(r, f)$), of f.

Let f and g be two non-constant meromorphic functions, and let α be a common small meromorphic function of f and g. We say that f and g share α CM (resp. IM) provided that $E(\alpha, f) = E(\alpha, g)$ (resp. $E(\alpha, f) = E(\alpha, g)$).

W. K. Hayman proposed the following well-known conjecture in [4].

Hayman Conjecture. If an entire function f satisfies $f^n f' \neq 1$ for all positive integers $n \in \mathbb{N}$, then f is a constant.

It has been verified by Hayman himself in [5] for the cases $n > 1$ and Clunie in [1] for the cases $n \geq 1$, respectively.

It is well-known that if two non-constant meromorphic functions f and g share two values CM and other two values IM, then f is a Möbius transformation of g. In 1997, C. C. Yang and X. H. Hua studied the unicity of differential monomials of the form $f^n f'$ and obtained the following theorem in [7].

Theorem A. Let f and g be two non-constant meromorphic (resp. entire) functions, let $n \geq 11$ (resp. $n \geq 6$) be an integer, and let $a \in \mathbb{C}\{0\}$ be a non-zero finite value. If $f^n f'$ and $g^n g'$ share the value a CM, then either $f = dg$ for some $(n+1)$-th root of unity d, or $f = c_1 e^{cz}$ and $g = c_2 e^{-cz}$ for three non-zero constants c, c_1 and c_2 such that $(c_1 c_2)^{n+1} e^{2} = -a^2$.

Remark 1. In fact, combining their original argumentations with a more precise calculation on equations (20) and (23) in [7, p.p. 403-404] could reduce the lower bound of the integer n from 7 to 6 [7, Remark 2] if f and g are entire.

In 2000, by using argumentations similar to those in [7], M. L. Fang and H. L. Qiu proved the following uniqueness theorem in [2].

Theorem B. Let f and g be two non-constant meromorphic (resp. entire) functions, let $n \geq 11$ (resp. $n \geq 6$) be an integer. If $f^n f'$ and $g^n g'$ share a CM, then either $f = dg$ for some $(n+1)$-th root of unity d, or $f = c_1 e^{cz}$ and $g = c_2 e^{-cz}$ for three non-zero constants c, c_1 and c_2 such that $4(c_1 c_2)^{n+1} e^{2} = -1$.

In this paper, we shall weaken the assumption of sharing the non-zero finite value a CM (i.e., $E(a, f^n f') = E(a, g^n g')$) in Theorem A to $E_3(a, f^n f') = E_3(a, g^n g')$. In fact, we shall prove the following three uniqueness theorems.

Theorem 1. Let f and g be two non-constant meromorphic (resp. entire) functions, let $n \geq 11$ (resp. $n \geq 6$) be an integer, and let $a \in \mathbb{C}\{0\}$ be a non-zero finite value. If $E_3(a, f^n f') = E_3(a, g^n g')$, then $f^n f'$ and $g^n g'$ share the value a CM.

Theorem 2. Let f and g be two non-constant meromorphic (resp. entire) functions, let $n \geq 15$ (resp. $n \geq 8$) be an integer, and let $a \in \mathbb{C}\{0\}$ be a non-zero
finite value. If $E_2(a, f'f') = E_2(a, g'g')$, then $f'f'$ and $g'g'$ share the value a CM.

Theorem 3. Let f and g be two non-constant meromorphic (resp. entire) functions, let $n \geq 19$ (resp. $n \geq 10$) be an integer, and let $a \in \mathbb{C}\{0\}$ be a non-zero finite value. If $E_1(a, f'f') = E_1(a, g'g')$, then $f'f'$ and $g'g'$ share the value a CM.

Remark 2. Obviously, Theorem 1 is an improvement of Theorem A.

2. Some lemmas

Lemma 1. Let f and g be two non-constant meromorphic functions satisfying $E_k(1, f) = E_k(1, g)$ for some positive integer $k \in \mathbb{N}$. Define H as the following

$$H := \left(\frac{f''}{f'} - 2 \frac{f'}{f-1} - \frac{g''}{g'} - 2 \frac{g'}{g-1}\right).$$

If $H \neq 0$, then

$$N(r, H) \leq N_1\left(r, \frac{1}{f-1}\right) + N_1\left(r, \frac{1}{g-1}\right) + N_0\left(r, \frac{1}{f'}\right) + N_0\left(r, \frac{1}{g'}\right) + \tilde{N}_1\left(r, \frac{1}{f'}\right) + \tilde{N}_1\left(r, \frac{1}{g'}\right) + S(r, f) + S(r, g) + S\left(r, \frac{1}{f} - 1\right) + S\left(r, \frac{1}{g} - 1\right),$$

where $N_0(r, 1/f')$ denotes the counting function of zeros of f' but not the zeros of $f(f - 1)$, and $N_0(r, 1/g')$ is similarly defined.

Proof. It is not difficult to see that simple poles of f is not poles of $\frac{f''}{f'} - 2 \frac{f'}{f-1}$ and simple poles of g is not poles of $\frac{g''}{g'} - 2 \frac{g'}{g-1}$. Then, the conclusion follows immediately since we assume $E_k(1, f) = E_k(1, g)$.

Lemma 2 (see [7, p.p. 397]). Under the condition of Lemma 1, we have

$$N_1\left(r, \frac{1}{f-1}\right) = N_1\left(r, \frac{1}{g-1}\right) \leq N(r, H) + S(r, f) + S(r, g).$$

Lemma 3 (see [7, p.p. 398] or [9]). Let f be some non-constant meromorphic function on \mathbb{C}. Then,

$$N\left(r, \frac{1}{f'}\right) \leq N(r, H) + S(r, f).$$

Lemma 4 (see [8]). Let f be a non-constant meromorphic function on \mathbb{C}, and let $k \in \mathbb{N}$ be a positive integer. Then,

$$N\left(r, \frac{1}{f^{(k)}}\right) \leq T(r, f^{(k)}) - T(r, f) + N\left(r, \frac{1}{f'}\right) + S(r, f).$$
3. Proof of Theorem 1

Define $F := \frac{F'}{a}$ and $F_1 := \frac{F'}{a(n+1)}$. Then, $F_1' = F$. Similarly, define $G := \frac{G'}{a}$ and $G_1 := \frac{G'}{a(n+1)}$. Now, by equations (19)–(20) in [7, p.p. 403-404], we have

(3.1) $\tilde{N}(r, F) = \tilde{N}(r, F_1)$,
(3.2) $\tilde{N}(r, G) = \tilde{N}(r, G_1)$,
and

(3.3) $\tilde{N}\left(r, \frac{1}{F}\right) + \tilde{N}\left(r, \frac{1}{F_1}\right) \leq 2 \tilde{N}\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{F}\right)$,
(3.4) $\tilde{N}\left(r, \frac{1}{G}\right) + \tilde{N}\left(r, \frac{1}{G_1}\right) \leq 2 \tilde{N}\left(r, \frac{1}{G}\right) + N\left(r, \frac{1}{G}\right)$.

Then, by the conclusions of Lemma 4, we derive

\begin{align*}
(n + 1)T(r, f) &= T(r, F_1) + O(1) \\
&\leq T(r, F) + \tilde{N}\left(r, \frac{1}{F}\right) - N\left(r, \frac{1}{F}\right) + S(r, f) \\
&\leq T(r, F) + \tilde{N}\left(r, \frac{1}{F_1}\right) - N\left(r, \frac{1}{F_1}\right) + S(r, f).
\end{align*}

(3.5)

Similarly, we obtain

\begin{align*}
(n + 1)T(r, g) &= T(r, G_1) + O(1) \\
&\leq T(r, G) + \tilde{N}\left(r, \frac{1}{G}\right) - N\left(r, \frac{1}{G}\right) + S(r, g).
\end{align*}

(3.6)

Firstly, we suppose that equation (2.1) is not identically zero, that is, $H \not\equiv 0$. Here, we replace the functions f and g in the statement of Lemma 1 by F and G, respectively. Combining the conclusions of Lemmas 1 and 2 with the assumption that $E_{33}(1, F) = E_{33}(1, G)$ yields

\begin{align*}
N_1\left(r, \frac{1}{F-1}\right) &\leq \tilde{N}_1(2, F) + \tilde{N}_1(2, G) + \tilde{N}_2\left(r, \frac{1}{F}\right) + \tilde{N}_2\left(r, \frac{1}{G}\right) \\
&+ N_0\left(r, \frac{1}{F'}\right) + N_0\left(r, \frac{1}{G'}\right) + \tilde{N}_4\left(r, \frac{1}{F-1}\right) \\
&+ \tilde{N}_4\left(r, \frac{1}{G-1}\right) + S(r, f) + S(r, g).
\end{align*}

(3.7)

Applying the second fundamental theorem to the functions F and G with the values 0, 1 and ∞, respectively, to conclude that
where \(N \) (from equations (3.1)–(3.6) and (3.10), and noting Lemma 3, we derive

\[
T(r, F) + T(r, G) \leq \hat{N}(r, F) + \hat{N}(r, \frac{1}{F}) + \hat{N}(r, \frac{1}{F-1}) - N_0(r, \frac{1}{F}) + S(r, f) \\
+ \hat{N}(r, G) + \hat{N}(r, \frac{1}{G}) + \hat{N}(r, \frac{1}{G-1}) - N_0(r, \frac{1}{G}) + S(r, g) \\
\leq \hat{N}(r, F) + \hat{N}(r, \frac{1}{F}) + \hat{N}(r, G) + \hat{N}(r, \frac{1}{G}) + N_1(r, \frac{1}{F-1}) \\
\quad + \hat{N}(r, \frac{1}{F-1}) - N_1\left(\frac{1}{F-1}\right) \\
- N_0\left(\frac{1}{F}\right) - N_0\left(\frac{1}{G}\right) + S(r, f) + S(r, g).
\]

(3.8)

Noting that

\[
\hat{N}\left(\frac{1}{F-1}\right) - \frac{1}{2} N_1\left(\frac{1}{F-1}\right) + N_4\left(\frac{1}{F-1}\right) \leq \frac{1}{2} N\left(\frac{1}{F-1}\right), \\
\hat{N}\left(\frac{1}{G-1}\right) - \frac{1}{2} N_1\left(\frac{1}{G-1}\right) + N_4\left(\frac{1}{G-1}\right) \leq \frac{1}{2} N\left(\frac{1}{G-1}\right).
\]

Then, combining the above two equations with \(E_{31}(1, F) = E_{31}(1, G) \) yields

\[
\hat{N}\left(\frac{1}{F-1}\right) + \hat{N}\left(\frac{1}{G-1}\right) + N_4\left(\frac{1}{F-1}\right) + N_4\left(\frac{1}{G-1}\right) \\
- N_1\left(\frac{1}{F-1}\right) \leq \frac{1}{2} (T(r, F) + T(r, G)) + S(r, f) + S(r, g).
\]

(3.9)

Hence, equations (3.7) - (3.9) imply

\[
T(r, F) + T(r, G) \leq 2 \left(N_2(r, F) + N_2(r, G) + N_2\left(\frac{1}{F}\right) + N_2\left(\frac{1}{G}\right) \right) \\
+ S(r, f) + S(r, g).
\]

(3.10)

where \(N_2(r, F) := \hat{N}(r, F) + N_2(r, F) \) and \(N_2(r, 1/F) := \hat{N}(r, 1/F) + N_2(r, 1/F) \), and \(N_2(r, G) \) and \(N_2(r, 1/G) \) are similarly defined.

From equations (3.1)–(3.6) and (3.10), and noting Lemma 3, we derive

\[
(n + 1)(T(r, f) + T(r, g)) \leq 2 \left(N_2(r, F) + N_2(r, G) + N_2\left(\frac{1}{F}\right) + N_2\left(\frac{1}{G}\right) \right) \\
+ N\left(\frac{1}{f}\right) - N\left(\frac{1}{F}\right) + N\left(\frac{1}{g}\right) - N\left(\frac{1}{G}\right) \\
+ S(r, f) + S(r, g) \\
\leq 4(\hat{N}(r, f) + \hat{N}(r, g)) + 5 \left(N\left(\frac{1}{f}\right) + N\left(\frac{1}{g}\right) \right) \\
+ N\left(\frac{1}{f}\right) + N\left(\frac{1}{g}\right) + S(r, f) + S(r, g)
\]

(3.11)
\[
\leq 5(\bar{N}(r, f) + \bar{N}(r, g)) + 6 \left(N\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{g} \right) \right)
\]

(3.12)

\[+ S(r, f) + S(r, g),\]

which implies \((n-10)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g)\), a contradiction against the assumption that \(n \geq 11\).

In particular, if \(f\) and \(g\) are entire, equation (3.11) turns out to be

(3.13)

\[\leq S(r, f) + S(r, g),\]

since both the terms \(\bar{N}(r, f)\) and \(\bar{N}(r, g)\) equal to \(O(1)\) now. Obviously, it contradicts the assumption that \(n \geq 6\).

Hence, \(H \equiv 0\). Integrating the equation \(H \equiv 0\) twice results in

\[\frac{F'}{F - 1} = k_1 \frac{G'}{G - 1} + k_2 \quad (k_1 \in \mathbb{C}\backslash\{0\}, \quad k_2 \in \mathbb{C}),\]

which implies that \(F\) and \(G\) share the value 1 CM.

This finishes the proof of Theorem 1.

\[\square\]

4. Proof of Theorem 2

From the condition that \(E_2(1, F) = E_2(1, G)\), if we furthermore suppose that \(H \neq 0\), then similar to equation (3.7), we have

\[
N_{11}\left(r, \frac{1}{F - 1} \right) \leq N_{12}(r, F) + N_{12}(r, G) + N_{12}\left(r, \frac{1}{F} \right) + N_{12}\left(r, \frac{1}{G} \right)
\]

\[+ N_0\left(r, \frac{1}{F'} \right) + N_0\left(r, \frac{1}{G'} \right) + \bar{N}_{13}\left(r, \frac{1}{F - 1} \right)
\]

\[+ \bar{N}_{13}\left(r, \frac{1}{G - 1} \right) + S(r, f) + S(r, g).\]

(4.1)

A routine calculation leads to

(4.2)

\[\bar{N}\left(r, \frac{1}{F - 1} \right) \leq \frac{1}{2} N_{11}\left(r, \frac{1}{F - 1} \right) + \frac{1}{2} \bar{N}_{13}\left(r, \frac{1}{F - 1} \right) \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{F - 1} \right),\]

(4.3)

\[\bar{N}\left(r, \frac{1}{G - 1} \right) \leq \frac{1}{2} N_{11}\left(r, \frac{1}{G - 1} \right) + \frac{1}{2} \bar{N}_{13}\left(r, \frac{1}{G - 1} \right) \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{G - 1} \right).\]

Applying the conclusions of Lemma 3 to \(F\) and taking reduced forms of the counting functions on both sides of equation (2.4) to conclude

\[
\bar{N}_{13}\left(r, \frac{1}{F - 1} \right) \leq \bar{N}(r, F) + S(r, f) \leq \bar{N}\left(r, \frac{1}{F} \right) + S(r, f)
\]

\[\leq \bar{N}(r, F) + \bar{N}\left(r, \frac{1}{F} \right) + S(r, f)
\]

\[\leq \bar{N}(r, F) + \bar{N}\left(r, \frac{1}{F} \right) + S(r, f)
\]

(4.4)

\[\leq 2\bar{N}(r, f) + 2\bar{N}\left(r, \frac{1}{f} \right) + S(r, f),\]
and similarly,

\[\tilde{N}_3 \left(r, \frac{1}{G-1} \right) \leq 2 \tilde{N}(r, g) + 2 \tilde{N} \left(r, \frac{1}{g} \right) + S(r, g). \]

Hence, equations (4.2)–(4.5) yield

\[
\begin{align*}
\tilde{N} \left(r, \frac{1}{F-1} \right) + \tilde{N} \left(r, \frac{1}{G-1} \right) + \tilde{N}_3 \left(r, \frac{1}{F-1} \right) + \tilde{N}_3 \left(r, \frac{1}{G-1} \right) & - \tilde{N}_1 \left(r, \frac{1}{F-1} \right) \leq \frac{1}{2} \left(T(r, F) + T(r, G) \right) \\
& + \left(\tilde{N}(r, f) \tilde{N}(r, g) + \tilde{N} \left(r, \frac{1}{f} \right) + \tilde{N} \left(r, \frac{1}{g} \right) \right) + S(r, f) + S(r, g).
\end{align*}
\]

Analogous to equation (3.10), we have

\[
T(r, F) + T(r, G) \leq 2 \left(N_2 \left(r, F \right) + N_2 \left(r, G \right) + N_2 \left(r, \frac{1}{F} \right) \right) + N_2 \left(r, \frac{1}{G} \right) + 2 \left(\tilde{N}(r, f) \tilde{N}(r, g) + \tilde{N} \left(r, \frac{1}{f} \right) + \tilde{N} \left(r, \frac{1}{g} \right) \right) + S(r, f) + S(r, g).
\]

Combining the above equation with equations (3.1)–(3.6) yields

\[(n + 1)(T(r, F) + T(r, G)) \leq 7(\tilde{N}(r, f) + \tilde{N}(r, g)) + S(r, f) + S(r, g), \]

which implies that \((n - 14)(T(r, F) + T(r, G)) \leq S(r, f) + S(r, g),\) a contradiction since we assume \(n \geq 15.\) In particular, if \(f\) and \(g\) are entire, then equation (4.6) turns into \((n - 7)(T(r, F) + T(r, G)) \leq S(r, f) + S(r, g).\) Obviously, it contradicts the assumption that \(n \geq 8.\)

Hence \(H \equiv 0,\) and \(F\) and \(G\) share the value 1 CM.

This finishes the proof of Theorem 2. \(\square\)

5. Proof of Theorem 3

From the condition that \(E_{11}(1, F) = E_{11}(1, G),\) if we furthermore assume that \(H \neq 0,\) then similar to equation (3.7), we have

\[N_1 \left(r, \frac{1}{F-1} \right) \leq \tilde{N}_1 \left(r, F \right) + \tilde{N}_1 \left(r, G \right) + \tilde{N}_1 \left(r, \frac{1}{F} \right) + \tilde{N}_1 \left(r, \frac{1}{G} \right) + N_0 \left(r, \frac{1}{F'} \right) + N_0 \left(r, \frac{1}{G'} \right) + \tilde{N}_1 \left(r, \frac{1}{F-1} \right) + \tilde{N}_1 \left(r, \frac{1}{G-1} \right) + S(r, f) + S(r, g). \]

\[(n) \]
It is not difficult to see that
\[
\bar{N}\left(r, \frac{1}{F - 1}\right) - \frac{1}{2}N_1\left(r, \frac{1}{F - 1}\right) \leq \frac{1}{2}N\left(r, \frac{1}{F - 1}\right),
\]
(5.2)
\[
\bar{N}\left(r, \frac{1}{G - 1}\right) - \frac{1}{2}N_1\left(r, \frac{1}{G - 1}\right) \leq \frac{1}{2}N\left(r, \frac{1}{G - 1}\right).
\]
(5.3)

Also, as shown in inequality (4.4), we have
\[
\bar{N}_{(2)}\left(r, \frac{1}{F - 1}\right) \leq \bar{N}\left(r, \frac{1}{F}\right) + S(r, f) \leq 2 \bar{N}\left(r, \frac{1}{F}\right) + 2 \bar{N}\left(r, \frac{1}{g}\right) + S(r, f).
\]
(5.4)
\[
\bar{N}_{(2)}\left(r, \frac{1}{G - 1}\right) \leq 2 \bar{N}(r, g) + 2 \bar{N}\left(r, \frac{1}{g}\right) + S(r, g).
\]
(5.5)

Hence, equations (5.2)–(5.5) yield
\[
\bar{N}\left(r, \frac{1}{F - 1}\right) + \bar{N}\left(r, \frac{1}{G - 1}\right) + \bar{N}_{(2)}\left(r, \frac{1}{F - 1}\right) + \bar{N}_{(2)}\left(r, \frac{1}{G - 1}\right)
- N_1\left(r, \frac{1}{F - 1}\right) \leq \frac{1}{2}(T(r, F) + T(r, G))
+ 2\left(\bar{N}(r, f) + \bar{N}(r, g) + \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{g}\right) \right)
+ S(r, f) + S(r, g).
\]

Analogically, we have
\[
T(r, F) + T(r, G) \leq 2\left(N_2(r, F) + N_2(r, G) + N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right) \right)
+ 4\left(\bar{N}(r, f) + \bar{N}(r, g) + \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{g}\right) \right)
+ S(r, f) + S(r, g).
\]

Hence,
\[
(n + 1)\left(T(r, f) + T(r, g) \right) \leq 9(\bar{N}(r, f) + \bar{N}(r, g))
+ 10\left(\bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{g}\right) \right) + S(r, f) + S(r, g),
\]
(5.6)
which implies that \((n - 18)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g)\), a contradiction since we assume \(n \geq 19\). In particularly, if \(f\) and \(g\) are entire, then equation (5.6) turns into \((n - 9)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g)\). Obviously, it contradicts the assumption that \(n \geq 10\).

Hence \(H \equiv 0\), and \(F\) and \(G\) share the value 1 CM.

This finishes the proof of Theorem 3.
6. Related results

Final Note 1. If we assume that \(f \) and \(g \) share the value \(\infty \) CM (resp. IM) in the statement of Lemma 1 besides the assumption that \(E_k(1, f) = E_k(1, g) \) for some positive integer \(k \in \mathbb{N} \), then equation (2.2) becomes

\[
N(r, H) \leq N_0(r, \frac{1}{f}) + N_0(r, \frac{1}{g}) + \tilde{N}_0(\frac{r, 1}{f}) + \tilde{N}_0(\frac{r, 1}{g}) + \tilde{N}(r, 1 \frac{1}{f-1}) + \tilde{N}(r, 1 \frac{1}{g-1}) + S(r, f) + S(r, g),
\]

and respectively,

\[
N(r, H) \leq \frac{1}{2} N(r, f) + \frac{1}{2} N(r, g) + N_0(r, \frac{1}{f}) + N_0(r, \frac{1}{g}) + \tilde{N}_0(\frac{r, 1}{f}) + \tilde{N}_0(\frac{r, 1}{g}) + \tilde{N}(r, 1 \frac{1}{f-1}) + \tilde{N}(r, 1 \frac{1}{g-1}) + S(r, f) + S(r, g).
\]

Applying the arguments used in our proofs with equation (2.2a) (resp. (2.2b)) could reduce the lower bounds of the integers \(n \) from \(n \geq 11, 15 \) and \(19 \) in Theorems 1, 2 and 3 to \(n \geq 9, 13 \) and \(17 \) (resp. \(n \geq 10, 14 \) and \(18 \)), respectively, provided that we assume furthermore that \(f \) and \(g \), and thus \(F \) and \(G \), share the value \(\infty \) CM (resp. IM).

Final Note 2. Using similar arguments as those in our proofs and replacing the notations \(F, F_1 \) (resp. \(G, G_1 \)) in Section 3 by new ones \(F = f^n f'/z, F_1 = f^{n+1}/(n+1) \) (resp. \(G = g^n g'/z, G_1 = g^{n+1}/(n+1) \)) (then, \(F'_1 = zF \) and \(G'_1 = zG \)), we could weaken the assumption of sharing \(z \) CM (i.e., \(E(z, f^n f') = E(z, g^n g') \)) in the statement of Theorem C to \(E_k(z, f^n f') = E_k(z, g^n g') \) for \(k = 1, 2 \) and 3.

In fact, if \(f \) and \(g \) are transcendental, our original proofs go well, while if \(f \) and \(g \) are rational functions (resp. polynomials), routine calculations on the term \(\log r \) would lead to analogous conclusions. However, in those cases we may have to increase the lower bounds of the integers \(n \) from \(n \geq 11, 15 \) and \(19 \) (resp. \(n \geq 6, 8 \) and \(10 \)) to \(n \geq 14, 19 \) and \(24 \) (resp. \(n \geq 9, 12 \) and \(15 \)), since now \(f \) and \(g \) have the same growth estimate as that of the function \(z \), in other words, of \(O(\log r) \). Below, we give an outline of the proof for those special cases.

Proof. First of all, according to the conclusion of [2, Theorem C], we know that \(f \) is rational whenever \(g \) is, and vice versa. Similarly, we have \(N(r, F) = N(r, f) + \log r \) and \(N_2(r, F) \leq 2N(r, f) + \log r \), and \(N(r, G) = N(r, g) + \log r \) and \(N_2(r, G) \leq 2N(r, g) + \log r \). Furthermore, we have

\[
(n+1)T(r, f) = T(r, F_1) + O(1) \leq T(r, zF) + N\left(r, \frac{1}{F_1}\right) - N\left(r, \frac{1}{zF}\right) + O(1)
\]

\[
\leq T(r, F) + N\left(r, \frac{1}{f}\right) - N\left(r, \frac{1}{F_1}\right) + \log r + O(1),
\]
\[(n+1)T(r, g) = T(r, G_1) + O(1) \leq T(r, zG) + N\left(r, \frac{1}{G_1}\right) - N\left(r, \frac{1}{zG}\right) + O(1) \]
\[
\leq T(r, G) + N\left(r, \frac{1}{g}\right) - N\left(r, \frac{1}{g'}\right) + \log r + O(1).
\]

If \(E_{20}(z, f^n f') = E_{20}(z, g^n g')\), then analogous to equation (3.11), we derive
\[(n+1)(T(r, f) + T(r, g)) \leq 5(\bar{N}(r, f) + \bar{N}(r, g)) + 6\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 6 \log r + O(1),
\]
which implies that \((n-10)(T(r, f) + T(r, g)) \leq 6 \log r + O(1).

Noting the discussions in [2, p. p. 437-438] fail here, we may have to suppose that \((n-10)(T(r, f) + T(r, g)) \geq (2n - 20) \log r\), and hence \((2n - 26) \log r \leq O(1)\), a contradiction since we assume \(n \geq 14\).

If \(E_{21}(z, f^n f') = E_{21}(z, g^n g')\) for \(k = 1, 2\), then parallel to equations (4.4)-(4.5) and (5.4)-(5.5), we have
\[
\bar{N}_{i_k}(r, \frac{1}{f - 1}) \leq 2\bar{N}(r, f) + 2\bar{N}\left(r, \frac{1}{f}\right) + \log r + O(1),
\]
\[
\bar{N}_{i_k}(r, \frac{1}{G - 1}) \leq 2\bar{N}(r, g) + 2\bar{N}\left(r, \frac{1}{g}\right) + \log r + O(1).
\]

If \(k = 2\), we have
\[(n+1)(T(r, f) + T(r, g)) \leq 7(\bar{N}(r, f) + \bar{N}(r, g)) + 8\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 8 \log r + O(1),
\]
which means \((2n - 36) \log r \leq O(1)\), a contradiction since we assume \(n \geq 19\).

If \(k = 1\), we have
\[(n+1)(T(r, f) + T(r, g)) \leq 9(\bar{N}(r, f) + \bar{N}(r, g)) + 10\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 10 \log r + O(1),
\]
which shows \((2n - 46) \log r \leq O(1)\), a contradiction since we assume \(n \geq 24\).

If \(f\) and \(g\) are polynomials, then \(N(r, F) = N(r, G) = \log r\), and hence \(\bar{N}(r, F) = N_2(r, F) = \bar{N}(r, G) = N_2(r, G) = \log r\). Similarly, we derive
\[(n+1)(T(r, f) + T(r, g)) \leq 6\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 6 \log r + O(1) \quad (k = 3),
\]
\[(n+1)(T(r, f) + T(r, g)) \leq 8\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 8 \log r + O(1) \quad (k = 2),
\]
\[(n+1)(T(r, f) + T(r, g)) \leq 10\left(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right)\right) + 10 \log r + O(1) \quad (k = 1).
\]
All the above three equations contradict the assumptions that \(n \geq 9 \) (\(k = 3 \)), \(n \geq 12 \) (\(k = 2 \)) and \(n \geq 15 \) (\(k = 1 \)), respectively.

Acknowledgement. The authors would like to express their genuine gratitude and heartfelt affection to their parents for their love and financial support, and are indebted to Professors Hong-Xun Yi, Pei-Chu Hu and the referee for valuable comments and suggestions made to this paper.

References

School of Mathematics and System Sciences, Shandong University
Jinan 250100, Shandong, People’s Republic of China
E-mail: xtbei@163.com
k.l.han@tom.com