ON THREE EQUIVALENCES CONCERNING
PONOMAREV-SYSTEMS

YING GE

Abstract. Let \(\{P_n\} \) be a sequence of covers of a space \(X \) such that \(\{st(x,P_n)\} \) is a network at \(x \) in \(X \) for each \(x \in X \). For each \(n \in \mathbb{N} \), let \(\mathcal{P}_n = \{P_\beta : \beta \in \Lambda_n\} \) and \(\Lambda_n \) be endowed the discrete topology. Put \(M = \{b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Lambda_n : \{P_\beta\} \text{ forms a network at some point } x_b \text{ in } X\} \) and \(f : M \longrightarrow X \) by choosing \(f(b) = x_b \) for each \(b \in M \). In this paper, we prove that \(f \) is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each \(P_n \) is a cs\(^*\)-cover (resp. fcs-cover, cf\(p \)-cover) of \(X \). As a consequence of this result, we prove that \(f \) is a sequentially-quotient, s-mapping if and only if it is a sequence-covering, s-mapping, where "s" can not be omitted.

1. Introduction

A space is called a Baire’s zero-dimensional space if it is a Tychonoff-product space of countable many discrete spaces. In [9], Ponomarev proved that each first countable space can be characterized as an open image of a subspace of a Baire’s zero-dimensional space. More precisely, he obtained the following result.

Theorem 1.1. Let \(X \) be a space with the topology \(\tau = \{P_\beta : \beta \in \Lambda\} \). For each \(n \in \mathbb{N} \), put \(\Lambda_n = \Lambda \) and endow \(\Lambda_n \) the discrete topology. Put \(Z = \Pi_{n \in \mathbb{N}} \Lambda_n \), which is a Baire’s zero-dimensional space, and put \(M = \{b = (\beta_n) \in Z : \{P_\beta\} \text{ forms a neighbourhood base at some point } x_b \text{ in } X\} \). Define \(f : M \longrightarrow X \) by choosing \(f(b) = x_b \) for each \(b \in M \). Then

(1) \(f \) is a mapping.
(2) \(f \) is continuous and onto.
(3) If \(X \) is first countable, then \(f \) is an open mapping.

Recently, while generalizing the Ponomarev’s methods, Lin ([6]) introduced Ponomarev-systems \((f, M, X, \{P_n\}) \) as in the following definition.

2000 Mathematics Subject Classification: 54E35, 54E40.

Key words and phrases: Ponomarev-system, point-star network, cs\(^*\)-(resp. fcs-, cf\(p \)-)cover, sequentially-quotient (resp. sequence-covering, compact-covering) mapping.

This project was supported by NSFC(No.10571151).

Received June 7, 2005, revised February 2006.
Definition 1.2.

(1) Let \(\mathcal{P} = \{ \mathcal{P}_x : x \in X \} \) be a cover of a space \(X \), where \(\mathcal{P}_x \subset (\mathcal{P})_x = \{ P \in \mathcal{P} : x \in P \} \). \(\mathcal{P} \) is called a network of \(X \) ([8]), if for each \(x \in U \) with \(U \) open in \(X \), there exists \(P \in \mathcal{P}_x \) such that \(x \in P \subset U \), where \(\mathcal{P}_x \) is called a network at \(x \) in \(X \).

(2) Let \(\{ \mathcal{P}_n \} \) be a sequence of covers of a space \(X \). \(\{ \mathcal{P}_n \} \) is called a point-star network of \(X \) ([7]), if \(\{ \text{st}(x, \mathcal{P}_n) \} \) is a network at \(x \) in \(X \) for each \(x \in X \), where \(\text{st}(x, \mathcal{P}) = \bigcup \{ P \in \mathcal{P} : x \in P \} \).

(3) Let \(\{ \mathcal{P}_n \} \) be a point-star network of a space \(X \). For each \(n \in \mathbb{N} \), put \(\mathcal{P}_n = \{ P_\beta : \beta \in \Lambda_n \} \) and endow \(\Lambda_n \) the discrete topology. Put \(M = \{ b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Lambda_n : \{ P_\beta \} \text{ forms a network at some point } x_b \text{ in } X \} \), then \(M \), which is a subspace of the product space \(\Pi_{n \in \mathbb{N}} \Lambda_n \), is a metric space and \(x_b \) is unique for each \(b \in M \). Define \(f : M \rightarrow X \) by choosing \(f(b) = x_b \), then \(f \) is a continuous and onto mapping. \(\{ f, M, X, \{ \mathcal{P}_n \} \} \) is called a Ponomarev-system ([7, 10]).

In a Ponomarev-system \(\{ f, M, X, \{ \mathcal{P}_n \} \} \), the following results have been obtained.

Theorem 1.3 ([6, 7, 10]). Let \(\{ f, M, X, \{ \mathcal{P}_n \} \} \) be a Ponomarev-system. Then the following hold.

(1) If each \(\mathcal{P}_n \) is a point-finite (resp. point-countable) cover of \(X \), then \(f \) is a compact mapping (resp. s-mapping).

(2) If each \(\mathcal{P}_n \) is a cs*-cover (resp. cf p-cover) of \(X \), then \(f \) is a sequentially-quotient (resp. compact-covering) mapping.

Take Theorem 1.3 into account, the following question naturally arises.

Question 1.4. Can implications (1) and (2) in Theorem 1.3 be reversed?

In this paper, we investigate the Ponomarev-system \(\{ f, M, X, \{ \mathcal{P}_n \} \} \) to answer Question 1.4 affirmatively. We also prove that, in a Ponomarev-system \(\{ f, M, X, \{ \mathcal{P}_n \} \} \), \(f \) is a sequence-covering mapping if and only if each \(\mathcal{P}_n \) is an fcs-cover. As a consequence of these results, \(f \) is a sequentially-quotient, s-mapping if and only if it is a sequence-covering, s-mapping, where “s” can not be omitted.

Throughout this paper, all spaces are assumed to be regular and \(T_1 \), and all mappings are continuous and onto. \(\mathbb{N} \) denotes the set of all natural numbers, \(\{ x_n \} \) denotes a sequence, where the \(n \)-th term is \(x_n \). Let \(X \) be a space and let \(A \) be a subset of \(X \). We call that a sequence \(\{ x_n \} \) converging to \(x \) in \(X \) is eventually in \(A \) if \(\{ x_n : n > k \} \cup \{ x \} \subset A \) for some \(k \in \mathbb{N} \). Let \(\mathcal{P} \) be a family of subsets of \(X \) and let \(x \in X \). \(\bigcup \mathcal{P} \), \(\text{st}(x, \mathcal{P}) \) and \((\mathcal{P})_x \) denote the union \(\bigcup \{ P : P \in \mathcal{P} \} \), the union \(\bigcup \{ P \in \mathcal{P} : x \in P \} \) and the subfamily \(\{ P \in \mathcal{P} : x \in P \} \) of \(\mathcal{P} \) respectively. For a sequence \(\{ \mathcal{P}_n : n \in \mathbb{N} \} \) of covers of a space \(X \) and a sequence \(\{ P_n : n \in \mathbb{N} \} \) of subsets of a space \(X \), we abbreviate \(\{ \mathcal{P}_n : n \in \mathbb{N} \} \) and \(\{ P_n : n \in \mathbb{N} \} \) to \(\{ \mathcal{P}_n \} \) and \(\{ P_n \} \) respectively. A point \(b = (\beta_n)_{n \in \mathbb{N}} \) of a Tychonoff-product space is abbreviated to \((\beta_n) \), and the \(n \)-th coordinate \(\beta_n \) of \(b \) is also denoted by \((b)_n \).
2. The main results

Definition 2.1. Let \(f : X \rightarrow Y \) be a mapping.
(1) \(f \) is called a sequentially-quotient mapping ([1]) if for each convergent sequence \(S \) in \(Y \), there exists a convergent sequence \(L \) in \(X \) such that \(f(L) = S \).
(2) \(f \) is called a sequence-covering mapping ([4]) if for each convergent sequence \(S \) converging to \(y \) in \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) = S \cup \{ y \} \).
(3) \(f \) is called a compact-covering mapping ([8]) if for each compact subset \(L \) of \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) = L \).

Remark 2.2. (1) Compact-covering mapping \(\Rightarrow \) sequence-covering mapping \(\Rightarrow \) (if the domain is metric) sequentially-quotient mapping ([6]).
(2) “sequence-covering mapping” in Definition 2.1(2) was also called “pseudo-sequence-covering mapping” by Ikeda, Liu and Tanaka in [5].

Definition 2.3. Let \((X,d) \) be a metric space, and let \(f : X \rightarrow Y \) be a mapping. \(f \) is called a \(\pi \)-mapping ([9]), if for each \(y \) in \(Y \) and for each neighbourhood \(U \) of \(y \) in \(Y \), \(d(f^{-1}(y), X - f^{-1}(U)) > 0 \).

Remark 2.4. (1) For a Ponomarev-system \(\{f, M, X, \{P_n\}\} \), \(f : M \rightarrow X \) is a \(\pi \)-mapping ([7, 10]).
(2) Recall a mapping \(f : X \rightarrow Y \) is a compact mapping (resp. \(s \)-mapping), if \(f^{-1}(y) \) is a compact (resp. separable) subset of \(X \) for each \(y \in Y \). It is clear that each compact mapping from a metric space is an \(s \)- and \(\pi \)-mapping.

Definition 2.5. Let \(\mathcal{P} \) be a cover of a space \(X \).
(1) \(\mathcal{P} \) is called a \(cs^* \)-cover of \(X \) ([6]) if for each convergent sequence \(S \) in \(X \), there exists \(P \in \mathcal{P} \) and a subsequence \(S' \) of \(S \) such that \(S' \) is eventually in \(P \).
(2) \(\mathcal{P} \) is called an \(fcs \)-cover of \(X \) ([3]) if for each sequence \(S \) converging to \(x \) in \(X \), there exists a finite subfamily \(\mathcal{P}' \) of \((\mathcal{P})_x \) such that \(S \) is eventually in \(\bigcup \mathcal{P}' \).
(3) \(\mathcal{P} \) is called a \(cfps \)-cover of \(X \) ([7]) if for each compact subset \(K \), there exists a finite family \(\{K_n : n \leq m\} \) of closed subsets of \(K \) and \(\{P_n : n \leq m\} \subset \mathcal{P} \) such that \(K = \bigcup\{K_n : n \leq m\} \) and each \(K_n \subset P_n \).

Lemma 2.6. Let \(\{f, M, X, \{P_n\}\} \) be a Ponomarev-system and let \(U = (\Pi_{n \in \mathbb{N}} \Gamma_n) \cap M \), where \(\Gamma_n \subset \Lambda_n \) for each \(n \in \mathbb{N} \). Then \(f(U) \subset \bigcup\{P_\beta : \beta \in \Gamma_k\} \) for each \(k \in \mathbb{N} \).

Proof. Let \(b = (\beta_k) \in U \) and let \(k \in \mathbb{N} \). Then \(\{P_{\beta_k}\} \) forms a network at \(f(b) \) in \(X \) and \(\beta_k \in \Gamma_k \). So \(f(b) \in P_{\beta_k} \subset \bigcup\{P_\beta : \beta \in \Gamma_k\} \). This proves that \(f(U) \subset \bigcup\{P_\beta : \beta \in \Gamma_k\} \).

Theorem 2.7. Let \(\{f, M, X, \{P_n\}\} \) be a Ponomarev-system. Then the following hold.
(1) \(f \) is a compact mapping (resp. \(s \)-mapping) if and only if \(\mathcal{P}_m \) is point-finite (resp. point-countable) cover of \(X \) for each \(m \in \mathbb{N} \).
(2) \(f \) is a sequentially-quotient mapping if and only if \(\mathcal{P}_m \) is a \(cs^* \)-cover of \(X \) for each \(m \in \mathbb{N} \).
(3) f is a compact-covering mapping if and only if \mathcal{P}_m is a cfp-cover of X for each $m \in \mathbb{N}$.

Proof. By Theorem 1.3, we only need to prove necessities of (1), (2) and (3). Let $m \in \mathbb{N}$.

(1) We only give a proof for the parenthetic part. If \mathcal{P}_m is not point-countable, then, for some $x \in X$, there exists an uncountable subset Γ_m of Λ_m such that $\Gamma_m = \{ \beta \in \Lambda_m : x \in P_\beta \}$. For each $\beta \in \Gamma_m$, put $U_\beta = ((\Pi_{n<m} \Lambda_n) \times \{ \beta \} \times (\Pi_{n>m} \Lambda_n)) \cap M$. Then $U_\beta : \beta \in \Gamma_m$ covers $f^{-1}(x)$. If not, there exists $c = (\gamma_n) \in f^{-1}(x)$ and $c \not\in U_\beta$ for each $\beta \in \Gamma_m$, so $\gamma_m \not\in \Gamma_m$. Thus $x \not\in P_\gamma_m$ from construction of Γ_m. But $x = f(c) \in P_\gamma_m$ from Lemma 2.6. This is a contradiction. Thus $\{ U_\beta : \beta \in \Gamma_m \}$ is an uncountable open cover of $f^{-1}(x)$, but it has not any proper subcover. So $f^{-1}(x)$ is not separable, hence f is not an s-mapping.

(2) Let f be a sequentially-quotient mapping, and let $\{ x_n \}$ be a sequence converging to x in X. Then there exists a sequence $\{ b_k \}$ converging to b in M such that $f(b_k) = x_n$ for each $k \in \mathbb{N}$. Let $b = (\beta_n) \in (\Pi_{n \in \mathbb{N}} \Lambda_n) \cap M$. We claim that the subsequence $\{ x_{n_k} \}$ of $\{ x_n \}$ is eventually in P_{β_m}. In fact, put $U = ((\Pi_{n<m} \Lambda_n) \times \{ \beta_m \} \times (\Pi_{n>m} \Lambda_n)) \cap M$, then U is an open neighbourhood of b in M. So sequence $\{ b_k \}$ is eventually in U, hence sequence $\{ x_{n_k} \}$ is eventually in $f(U)$. $f(U) \subset P_{\beta_m}$ from Lemma 2.6, so $\{ x_{n_k} \}$ is eventually in P_{β_m}. Note that $\beta_m \in \Lambda_m$, so $P_{\beta_m} \subset \mathcal{P}_m$. This proves that \mathcal{P}_m is a cs^*-cover of X.

(3) Let f be a compact-covering mapping, and let C be a compact subset of X. Then there exists a compact subset K of M such that $f(K) = C$. For each $a \in K$, put $U_a = ((\Pi_{n<m} \Lambda_n) \times \{(a)_{m} \} \times (\Pi_{n>m} \Lambda_n)) \cap M$, where $(a)_{m} \in \Lambda_m$ is the m-th coordinate of a, then $U_a \cap K$ is an open (in subspace K) neighbourhood of a. So there exists an open (in subspace K) neighbourhood V_a of a such that $a \in V_a \subset Cl_K(V_a) \subset U_a \cap K$, where $Cl_K(V_a)$ is the closure of V_a in subspace K. Note that $\{ V_a : a \in K \}$ is an open cover of subspace K and K is compact in M, so there exists a finite subset $\{ a_1, a_2, \ldots, a_s \}$ of K such that $\{ V_{a_i} : i = 1, 2, \ldots, s \}$ is a finite cover of K. Thus $\bigcup \{ Cl_K(V_{a_i}) : i = 1, 2, \ldots, s \} = K$, and so $\bigcup \{ f(Cl_K(V_{a_i})) : i = 1, 2, \ldots, s \} = f(K) = C$. For each $i = 1, 2, \ldots, s$, put $C_i = f(Cl_K(V_{a_i}))$. Since $Cl_K(V_{a_i})$ is compact in K, C_i is compact in C, so C_i is closed in C, and $C = \bigcup \{ C_i : i = 1, 2, \ldots, s \}$. For each $i = 1, 2, \ldots, s$, $C_i = f(Cl_K(V_{a_i})) \subset f(U_{a_i} \cap K) \subset f(U_{a_i})$, and $f(U_{a_i}) \subset P_{(a_i)_{m}}$ from Lemma 2.6, so $C_i \subset P_{(a_i)_{m}}$. Note that $(a_i)_{m} \in \Lambda_m$, so $P_{(a_i)_{m}} \subset \mathcal{P}_m$. This proves that \mathcal{P}_m is a cfp-cover of X.

By viewing the above theorem, we ask: in a Ponomarev-system $(f, M, X, \{ \mathcal{P}_n \})$, what is the sufficient and necessary condition such that f is a sequence-covering mapping? We give an answer to this question.

Theorem 2.8. Let $(f, M, X, \{ \mathcal{P}_n \})$ be a Ponomarev-system. Then f is a sequence-covering mapping if and only if each \mathcal{P}_n is an fcs-cover of X.

Proof. Suficiency: Let each \mathcal{P}_n be an fcs-cover of X, and let $S = \{ x_n \}$ be a sequence converging to x in X. For each $n \in \mathbb{N}$, since \mathcal{P}_n is an fcs-cover, there exists a finite subfamily \mathcal{F}_n of $(\mathcal{P}_n)_x$ such that S is eventually in $\bigcup \mathcal{F}_n$.

Note that $S - \bigcup \mathcal{F}_n$ is finite. There exists a finite subfamily \mathcal{G}_n of \mathcal{P}_n such that $S - \bigcup \mathcal{F}_n \subset \bigcup \mathcal{G}_n$. Put $\mathcal{F}_n \cup \mathcal{G}_n = \{P_{\beta_n} : \beta_n \in \Gamma_n\}$, where Γ_n is a finite subset of Λ_n. For each $\beta_n \in \Gamma_n$, if $P_{\beta_n} \in \mathcal{F}_n$, put $S_{\beta_n} = (S \cap P_{\beta_n}) \cup \{x\}$, otherwise, put $S_{\beta_n} = (S - \bigcup \mathcal{F}_n) \cap P_{\beta_n}$. It is easy to see that $S = \bigcup_{\beta_n \in \Gamma_n} S_{\beta_n}$ and $\{S_{\beta_n} : \beta_n \in \Gamma_n\}$ is a family of compact subsets of X.

Put $K = \{(\beta_n) : \beta_n \in \Pi_{n \in \mathbb{N}} \Gamma_n : \bigcap_{n \in \mathbb{N}} S_{\beta_n} \neq \emptyset\}$. Then

Claim 1: $K \subset M$ and $f(K) \subset S$.

Let $b = (\beta_n) \in K$, then $\bigcap_{n \in \mathbb{N}} S_{\beta_n} \neq \emptyset$. Pick $y \in \bigcap_{n \in \mathbb{N}} S_{\beta_n}$, then $y \in \bigcap_{n \in \mathbb{N}} P_{\beta_n}$. Note that $\{P_{\beta_n} : n \in \mathbb{N}\}$ forms a network at y in X if and only if $y \in \bigcap_{n \in \mathbb{N}} P_{\beta_n}$. So $b \in M$ and $f(b) = y \in S$. This proves that $K \subset M$ and $f(K) \subset S$.

Claim 2: $S \subset f(K)$.

Let $y \in S$. For each $n \in \mathbb{N}$, pick $\beta_n \in \Gamma_n$ such that $y \in S_{\beta_n}$. Put $b = (\beta_n)$, then $b \in K$ and $f(b) = y$. This proves that $S \subset f(K)$.

Claim 3: K is a compact subset of M.

Since $K \subset M$ and $\Pi_{n \in \mathbb{N}} \Gamma_n$ is a compact subset of $\prod_{n \in \mathbb{N}} \Lambda_n$. We only need to prove that K is a closed subset of $\Pi_{n \in \mathbb{N}} \Gamma_n$. It is clear that $K \subset \Pi_{n \in \mathbb{N}} \Gamma_n$. Let $b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n - K$. Then $\bigcap_{n \in \mathbb{N}} S_{\beta_n} = \emptyset$. There exists $n_0 \in \mathbb{N}$ such that $\bigcap_{n \leq n_0} S_{\beta_n} = \emptyset$. Put $W = \{(\gamma_n) : \gamma_n = \beta_n \text{ for } n \leq n_0\}$. Then W is open in $\Pi_{n \in \mathbb{N}} \Gamma_n$, and $b \in W$. It is easy to see that $W \cap K = \emptyset$. So K is a closed subset of $\Pi_{n \in \mathbb{N}} \Gamma_n$.

By the above three claims, f is a sequence-covering mapping.

Necessity: Let f be a sequence-covering mapping and let $m \in \mathbb{N}$. Whenever $\{x_n\}$ is a sequence converging to x in X, there exists a compact subset K of M such that $f(K) = \{x_n : n \in \mathbb{N}\} \cup \{x\}$. Since $f^{-1}(x) \cap K$ is a compact subset of M, there exists a finite subset $\{a_i : i = 1, 2, \ldots, s\}$ of $f^{-1}(x) \cap K$ and a finite open cover $\{U_i : i = 1, 2, \ldots, s\}$ of $f^{-1}(x) \cap K$, where for each $i = 1, 2, \ldots, s$, $U_i = ((\Pi_{i<m} \Lambda_n) \times \{(a_i)_m\}) \times (\Pi_{i>n} \Lambda_n)) \cap M$ is an open neighbourhood of a_i, and $(a_i)_m \in \Lambda_m$ is the m-th coordinate of a_i. By Lemma 2.6, $x = f(a_i) \in f(U_i \subset P_{(a_i)_m}) \in (\mathcal{P}_m)_x$ for each $i = 1, 2, \ldots, s$. We only need to prove that sequence $\{x_n\}$ converging to x is eventually in $\bigcup\{P_{(a_i)_m} : i = 1, 2, \ldots, s\}$. If not, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \notin \bigcup\{P_{(a_i)_m} : i = 1, 2, \ldots, s\}$ for each $k \in \mathbb{N}$. That is, for each $k \in \mathbb{N}$ and each $i = 1, 2, \ldots, s$, $x_{n_k} \notin P_{(a_i)_m}$. For each $k \in \mathbb{N}$, we pick $b_k \in K$ such that $f(b_k) = x_{n_k}$. If for some $k \in \mathbb{N}$ and some $i = 1, 2, \ldots, s$, $b_k \in U_i$, then $x_{n_k} = f(b_k) \in f(U_i) \subset P_{(a_i)_m}$, from Lemma 2.6. This is a contradiction. So $b_k \notin U_i$ for each $k \in \mathbb{N}$ and each $i = 1, 2, \ldots, s$. Thus $\{b_k : k \in \mathbb{N}\} \subset K - \bigcup\{U_i : i = 1, 2, \ldots, s\}$. Note that $K - \bigcup\{U_i : i = 1, 2, \ldots, s\}$ is a compact metric subspace, there exists a sequence $\{b_{k_j}\}$ converging to a point $b \in K - \bigcup\{U_i : i = 1, 2, \ldots, s\}$. Thus $b \notin f^{-1}(x)$, so $f(b) \neq x$. On the other hand, $(f(b_{k_j}))$ converges to $f(b)$ by the continuity of f and $\{f(b_{k_j})\} = \{x_{n_k}\}$ converges to x, so $f(b) = x$. This is a contradiction. So sequence $\{x_n\}$ converging to x is eventually in $\bigcup\{P_{(a_i)_m} : i = 1, 2, \ldots, s\}$.

□
3. Some consequences

cs*-cover and fcs-cover are not equivalent in general, but there exist some relations between cs*-cover and fcs-cover.

Proposition 3.1. Let \(\mathcal{P} \) be a cover of a space \(X \). Then the following hold.

1. If \(\mathcal{P} \) is an fcs-cover of \(X \), then \(\mathcal{P} \) is a cs*-cover of \(X \).
2. If \(\mathcal{P} \) is a point-countable cs*-cover of \(X \), then \(\mathcal{P} \) is an fcs-cover of \(X \).

Proof. (1) holds from Definition 2.5. We only need to prove (2).

Let \(\mathcal{P} \) be a point-countable cs*-cover of \(X \). Let \(S = \{x_n\} \) be a sequence converging to \(x \) in \(X \). Since \(\mathcal{P} \) is point-countable, put \((\mathcal{P})_x = \{P_n : n \in \mathbb{N}\}\). Then \(S \) is eventually in \(\bigcup_{n \leq k} P_n \) for some \(k \in \mathbb{N} \). If not, then for any \(k \in \mathbb{N} \), \(S \) is not eventually in \(\bigcup_{n \leq k} P_n \). So, for each \(k \in \mathbb{N} \), there exists \(x_{n_k} \in S - \bigcup_{n \leq k} P_n \). We may assume \(n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots \). Put \(S' = \{x_{n_k} : k \in \mathbb{N}\} \), then \(S' \) is a sequence converging to \(x \). Since \(\mathcal{P} \) is a cs*-cover, there exists \(m \in \mathbb{N} \) and a subsequence \(S'' \) of \(S' \) such that \(S'' \) is eventually in \(P_m \). Note that \(P_m \in (\mathcal{P})_x \).

This contradicts the construction of \(S' \).

Corollary 3.2. Let \((f, M, X, \{\mathcal{P}_n\})\) be a Ponomarev-system. Then the following are equivalent.

1. \(f \) is a sequentially-quotient, s-mapping;
2. \(f \) is a sequence-covering, s-mapping.

Proof. Consider the following conditions.

3. \(\mathcal{P}_n \) is a point-countable cs*-cover of \(X \) for each \(n \in \mathbb{N} \);
4. \(\mathcal{P}_n \) is a point-countable fcs-cover of \(X \) for each \(n \in \mathbb{N} \).

Then (1)\(\iff\) (3) and (2)\(\iff\) (4) from Theorem 2.7 and Theorem 2.8 respectively.

(3)\(\iff\) (4) from Proposition 3.1. So (1)\(\iff\) (2).

Can “s-” in Corollary 3.2 be omitted? We give a negative answer for this question. We call a family \(D \) of subsets of a set \(D \) is an almost disjoint family if \(A \cap B = \emptyset \) finite whenever \(A, B \in D \), \(A \neq B \).

Example 3.3. There exists a space \(X \), which has a point-star network \(\{\mathcal{P}_n\} \) consisting of cs*-covers of \(X \), but \(\mathcal{P}_n \) is not an fcs-cover of \(X \) for each \(n \in \mathbb{N} \).

Proof. Let \(X = \{0\} \cup \{1/n : n \in \mathbb{N}\} \) endowed with usual subspace topology of real line \(\mathbb{R} \). Let \(n \in \mathbb{N} \), we construct \(\mathcal{P}_n \) as follows.

Put \(A_n = \{1/k : k > n\} \). Using Zorn’s Lemma, there exists a family \(\mathcal{A}_n \) of infinite subsets of \(A_n \) such that \(\mathcal{A}_n \) is an almost disjoint family and maximal with respect to these properties. Then \(\mathcal{A}_n \) must be infinite (in fact, \(\mathcal{A}_n \) must be uncountable) and denote it by \(\{P_\beta : \beta \in \Lambda_n\} \). Put \(\mathcal{B}_n = \{P_\beta \cup \{0\} : \beta \in \Lambda_n\} \), and put \(\mathcal{P}_n = \mathcal{B}_n \cup \{1/k : k = 1, 2, \ldots, n\} \). Thus \(\mathcal{P}_n \) is constructed. We only need to prove the following three claims.

Claim 1. \(\{\mathcal{P}_n\} \) is a point-star network of \(X \).

Let \(x \in U \) with \(U \) open in \(X \). If \(x = 0 \), then there exists \(m \in \mathbb{N} \) such that \(A_m \subset U \). It is easy to check that \(st(0, \mathcal{P}_n) = A_m \cup \{0\} \). So \(0 \in st(0, \mathcal{P}_n) \subset U \). If
This proves that \(\{P_n\} \) is a point-star network of \(X \).

Claim 2: For each \(n \in \mathbb{N} \), \(P_n \) is a \(cs^* \)-cover of \(X \).

Let \(n \in \mathbb{N} \) and let \(S = \{x_k\} \) be a sequence converging to \(x \) in \(X \). Without loss of generalization, we can assume \(S \) is nontrivial, that is, the set \(L = \{x_k : k \in \mathbb{N}\} \cap A_n \) is an infinite subset of \(A_n \) and the limit point \(x = 0 \). If \(L \in A_n \), it is clear that \(S \) has a subsequence is eventually in \(\bigcup\{0\} \in B_n \subset P_n \). If \(L \not\in A_n \), then there exists \(\beta \in A_n \) such that \(L \cap P_\beta \) is infinite. Otherwise, \(L \in A_n \) by maximality of \(A_n \). Thus \(S \) has a subsequence is eventually in \(P_\beta \cup \{0\} \in B_n \subset P_n \). So \(P_n \) is a \(cs^* \)-cover of \(X \).

Claim 3: For each \(n \in \mathbb{N} \), \(P_n \) is not an \(fcs \)-cover of \(X \).

Let \(n \in \mathbb{N} \). If \(P_n \) is an \(fcs \)-cover of \(X \), then, for sequence \(\{1/k\} \) converging to \(0 \) in \(X \), there exist \(P_{\beta_1}, P_{\beta_2}, \ldots, P_{\beta_k} \in A_n \) and some \(m \in \mathbb{N} \) such that \(A_m = \{1/k : k > m\} \subset \bigcup\{P_\beta : i = 1, 2, \ldots, s\} \). Since \(A_n \) is infinite, pick \(\beta \in A_n \) such that \(\beta = 1, 2, \ldots, s \). Then \(A_m \cap P_\beta \) is infinite, and \(A_m \cap P_\beta \subset \bigcup\{P_\beta : i = 1, 2, \ldots, s\} \). So there exists \(i \in \{1, 2, \ldots, s\} \) such that \(A_m \cap P_\beta \cap P_{\beta_i} \) is infinite. Thus \(P_\beta \cap P_{\beta_i} \) is infinite. This contradicts that \(A_n \) is almost disjoint. So \(P_n \) is not an \(fcs \)-cover of \(X \).

Thus we complete the proof of this example.

Remark 3.4. Let \(X \) and \(\{P_n\} \) be given as in Example 3.3. Then, for Ponomarev-system \((f, M, X, \{P_n\}) \), \(f \) is sequentially-quotient from Theorem 2.7 and Claim 2 in Example 3.3 (note: \(f \) is also a \(\pi \)-mapping from Remark 2.(1)), and \(f \) is not sequence-covering from Theorem 2.8 and Claim 3 in Example 3.3. So “\(s^\ast \)” in Corollary 3.2 can not be omitted.

Remark 3.5. Recently, Lin proved that each sequentially-quotient, compact mapping from a metric space is sequence-covering, which answers [6, Question 3.4.8] (also, [2, Question 2.6]). Naturally, we ask: is each sequentially-quotient, \(\pi \)-mapping from a metric space sequence-covering? The answer is negative. In fact, let \(f \) be a mapping in Remark 3.4. Then \(f \) is a sequentially-quotient, \(\pi \)-mapping from a metric space \(M \), but it is not sequence-covering.

Acknowledgement. The author would like to thank the referee for his/her valuable amendments and suggestions.

References

Department of Mathematics, Suzhou University
Suzhou 215006, P. R. China
E-mail: geying@pub.sz.jsinfo.net