PROLONGATION OF PAIRS OF CONNECTIONS INTO CONNECTIONS ON VERTICAL BUNDLES

MIROSLAV DOUPOVEC AND WLODZIMIERZ M. MIKULSKI

Abstract. Let F be a natural bundle. We introduce the geometrical construction transforming two general connections into a general connection on the F-vertical bundle. Then we determine all natural operators of this type and we generalize the result by I. Kolár and the second author on the prolongation of connections to F-vertical bundles. We also present some examples and applications.

Introduction

Let \mathcal{M}_{fm} be the category of m-dimensional manifolds and local diffeomorphisms, \mathcal{FM} be the category of fibered manifolds and fiber respecting mappings and $\mathcal{FM}_{m,n}$ be the category of fibered manifolds with m-dimensional bases and n-dimensional fibers and locally invertible fiber respecting mappings.

Consider an arbitrary bundle functor F on the category \mathcal{M}_{fm} and denote by V^F its vertical modification. Our starting point is the paper [9] by I. Kolár and the second author, who studied the prolongation of a connection Γ on an arbitrary fibered manifold $Y \to M$ with respect to an F-vertical functor V^F. In particular, they have introduced an F-vertical prolongation $V^F\Gamma$ of a connection Γ and have proved that V^F is the only natural operator of finite order transforming connections on $Y \to M$ into connections on $V^FY \to M$. They have also described some conditions under which every natural operator of such a type has finite order. Further, in the case of the vertical Weil functor V^A they have proved that the operator transforming a connection Γ on $Y \to M$ into its vertical prolongation $V^A\Gamma$ is the only natural one.

The aim of this paper is to study the prolongation of a pair of connections Γ_1 and Γ_2 on $Y \to M$ into a connection on $V^FY \to M$. Our main result is Theorem 1 which describes all such natural operators. As a direct consequence we prove the generalization of a result by I. Kolár and the second author. In particular, we show that V^F is the only natural operator transforming connections on $Y \to M$ into connections on $V^FY \to M$ (without any additional assumption.

2000 Mathematics Subject Classification: 58A20.
Key words and phrases: connection, vertical bundle.
The first author was supported by a grant of the GA ČR No. 201/02/0225.
Received March 8, 2004.
on the finite order). In Section 1 we discuss the prolongation of connections on $Y \to M$ into connections on $GY \to M$, where G is a bundle functor on $\mathcal{FM}_{m,n}$. Section 2 is devoted to the construction of a connection on $V^A Y \to M$ by means of a pair Γ_1, Γ_2 of connections on $Y \to M$. This geometrical construction will be based on linear natural operators transforming vector fields on n-manifolds N into vector fields on FN. In Section 3 we introduce some examples and applications. We also show, that in the case of a vertical Weil functor V^A the connection on $V^A Y \to M$ depending on a pair Γ_1, Γ_2 can be constructed by means of the vertical prolongation of the deviation $\delta(\Gamma_1, \Gamma_2)$ of Γ_1 and Γ_2. Finally, the whole Section 4 is devoted to the proof of Theorem 1.

In what follows $Y \to M$ stands for $\mathcal{FM}_{m,n}$-objects and N stands for \mathcal{MF}_{n}-objects. All manifolds and maps are assumed to be of the class C^∞. Unless otherwise specified, we use the terminology and notation from the book [7].

1. Prolongation of connections to $GY \to M$

Recently it has been clarified that the order of bundle functors on \mathcal{FM} is characterized by three integers (r, s, q), $s \geq r \leq q$ and is based on the concept of (r, s, q)-jet, [7]. Consider two fibered manifolds $p : Y \to M$ and $\overline{p} : \overline{Y} \to \overline{M}$ and let $r, s \geq r, q \geq r$ be integers. We recall that two \mathcal{FM}-morphisms $f, g : Y \to \overline{Y}$ with the base maps $f, g : M \to \overline{M}$ determine the same (r, s, q)-jet $j^{r,s,q}_y f = j^{r,s,q}_y g$ at $y \in Y, p(y) = x$. If

$$j^r_y f = j^r_y g, \quad j^s_y (f|_{Y_x}) = j^s_y (g|_{Y_x}), \quad j^q_y f = j^q_y g.$$

The space of all such (r, s, q)-jets will be denoted by $J^{r,s,q}(Y, \overline{Y})$. By 12.19 in [7], the composition of \mathcal{FM}-morphisms induces the composition of (r, s, q)-jets.

Definition 1 ([9]). A bundle functor G on $\mathcal{FM}_{m,n}$ is said to be of order (r, s, q), if $j^{r,s,q}_y f = j^{r,s,q}_y g$ implies $Gf|_{GY} = Gg|_{GY}$.

Then the integer q is called the base order, s is called the fiber order and r is called the total order of G.

If $X : N \to TN$ is a vector field and F is a bundle functor on \mathcal{MF}_n, then we can define the flow prolongation $\mathcal{FX} : FN \to TFN$ of X with respect to F by

$$\mathcal{FX} = \frac{\partial}{\partial t} \big|_0 F(\exp tX)$$

where $\exp tX$ denotes the flow of X, [7]. Quite analogously, a projectable vector field on a fibered manifold $Y \to M$ is an \mathcal{FM}-morphism $Z : Y \to TY$ over the underlying vector field $M \to TM$, and its flow $\exp tZ$ is formed by local $\mathcal{FM}_{m,n}$-morphisms. Further, if G is a bundle functor on $\mathcal{FM}_{m,n}$, the flow prolongation of Z with respect to G is defined by

$$GZ = \frac{\partial}{\partial t} \big|_0 G(\exp tZ).$$

By [9], this map is \mathbb{R}-linear and preserves bracket.
Proposition 1 ([9]). If G is of order (r, s, q), then the value of $G Z$ at each point of $G Y$ depends on $j^r_s q Z$ only.

Thus the construction of the flow prolongation of projectable vector fields can be interpreted as a map

$$G_Y : G Y \times_Y J^{r,s,q} Y \to T G Y,$$

where $J^{r,s,q} Y$ denotes the space of all (r, s, q)-jets of projectable vector fields on Y. Since the flow prolongation is \mathbb{R}-linear, G_Y is linear in the second factor.

Now let $\Gamma : Y \to J^1 Y$ be a general connection on $p : Y \to M$. In [7] and [9] it is clarified, that if the functor G on $\mathcal{F} \mathcal{M}_{m,n}$ has the base order q, then one can construct the induced connection $G(\Gamma, \Delta)$ on $G Y \to M$ by means of an auxiliary linear q-th order connection Δ on the base manifold M. The geometrical construction of the connection $G(\Gamma, \Delta)$ is the following. Let X be a vector field on M with the coordinate components $X^i(x)$ and let

$$dy^p = \Gamma^p_i(x, y) dx^i$$

be the coordinate expression of Γ. Then the Γ-lift of X is a vector field ΓX on Y, whose coordinate form is

$$X^i(x) \frac{\partial}{\partial x^i} + \Gamma^p_i(x, y) X^i(x) \frac{\partial}{\partial y^p}.$$

By Proposition 1, the flow prolongation $G(\Gamma X)$ depends on the q-jets of X only. So we obtain a map

$$G(\Gamma) : G Y \times M J^q T M \to T G Y,$$

which is linear in the second factor. Further, let $\Delta : T M \to J^q T M$ be a linear q-th order connection on M. By linearity, the composition

$$G(\Gamma, \Delta) := G(\Gamma) \circ (id_G \times id_M) \Delta : G Y \times M T M \to T G Y$$

is the lifting map of a connection on $G Y \to M$. Clearly, if the base order of G is zero, then (2) is a connection on $G Y \to M$ and we need no auxiliary linear connection Δ. This is the case of a vertical functor V^F, which is defined as follows. Let F be a bundle functor on $\mathcal{M}_{f, n}$ of order s. Its vertical modification V^F is a bundle functor on $\mathcal{F} \mathcal{M}_{m,n}$ defined by

$$V^F Y = \bigcup_{x \in M} F(Y_x), \quad V^F f = \bigcup_{x \in M} F(f_x),$$

where f_x is the restriction and corestriction of $f : Y \to \overline{Y}$ over $f : M \to \overline{M}$ to the fibers Y_x and $\text{Graph}(f_x)$, [9]. Obviously, the order of the functor V^F is $(0, s, 0)$. Since the base order of V^F is zero, the map (2) defines a connection $V^F \Gamma$ for every connection Γ on $Y \to M$.

Definition 2 ([9]). The connection $V^F \Gamma$ is called the F-vertical prolongation of Γ.

If $F = T^A$ is a Weil functor, then V^T^A is the vertical Weil functor on $\mathcal{F}M_{m,n}$, which will be denoted by V^A. This functor induces the vertical A-prolongation $V^A \Gamma$. In particular, for $F = T$ we obtain the classical vertical bundle, which will be denoted by V^T. I. Kolár [5] has proved that V^T is the only natural operator transforming connections on $Y \to M$ into connections on $VY \to M$, see also [7], p. 255. Moreover, the following naturality property of the F-vertical prolongation $V^F \Gamma$ is an interesting generalization of the well known result concerning the classical vertical prolongation V^T to an arbitrary bundle functor F on $M_{f\cdot n}$.

Proposition 2 ([9]). V^F is the only natural operator of finite order transforming connections on $Y \to M$ into connections on $V^F Y \to M$.

Proposition 3 ([9]). If the standard fiber $F_0(\mathbb{R}^n)$ of F is compact or if $F_0(\mathbb{R}^n)$ contains a point z_0 such that $F(bid_{\mathbb{R}^n})(z) \to z_0$ if $b \to 0$ for any $z \in F_0(\mathbb{R}^n)$, then every natural operator D transforming connections on $Y \to M$ into connections on $V^F Y \to M$ has finite order.

For example, the assumption of Proposition 3 is satisfied in the case F is a Weil functor T^A. On the other hand, this assumption is not satisfied in the case F is a cotangent bundle functor T^*.

Remark 1. It is well known, that there is no natural operator transforming connections on $Y \to M$ into connections on $J^1 Y \to M$, see [5] and [7]. Quite analogously, I. Kolár and the first author have proved that there is no first order natural operator transforming connections on $Y \to M$ into connections on $TY \to M$, [2]. The second author has recently proved the following general result, [13]: If G is a bundle functor on $\mathcal{F}M_{m,n}$ such that $G^1 : M_{f\cdot n} \to \mathcal{F}M$, $G^1 M = G(M \times \mathbb{R}^n)$, $G^1(\phi) = G(\phi \times id_{\mathbb{R}^n})$ is not of order zero, then there is no natural operator transforming connections on $Y \to M$ into connections on $GY \to M$. This means that in this case, the use of an auxiliary linear connection Δ on the base manifold M in the construction (3) is unavoidable. We remark that all natural operators transforming a connection Γ on $Y \to M$ and a linear connection $\Delta : TM \to J^1 TM$ into a connection on $J^1 Y \to M$ are determined in [5].

2. Prolongation of pairs of connections into connections on vertical bundles

Let $F : M_{f\cdot n} \to \mathcal{F}M$ be a natural bundle of order s and $V^F : \mathcal{F}M_{m,n} \to \mathcal{F}M$ be the corresponding vertical modification. Suppose we have a natural linear operator

$L : T \to TF$

transforming vector fields on N into vector fields on FN. Let $\Gamma_1, \Gamma_2 : Y \times_M TM \to TY$ be connections on an $\mathcal{F}M_{m,n}$-object $Y \to M$. We are going to construct
a connection $\mathcal{V}^{F,L}(\Gamma_1, \Gamma_2)$ on $V^F Y \to M$ depending canonically on Γ_1 and Γ_2. Clearly, such a connection can be written in the form

$$\mathcal{V}^{F,L}(\Gamma_1, \Gamma_2) : V^F Y \times_M TM \to TV^F Y.$$

Firstly, we define a fiber linear map

$$(4) \quad (\Gamma_1, \Gamma_2)^{F,L} : V^F Y \times_M TM \to V(V^F Y)$$

covering the identity on $V^F Y$ as follows. Let $(u, v) \in (V^F Y \times_M TM)_x$, $x \in M$ and let v^{Γ_1}, v^{Γ_2} (defined on Y_x) be the horizontal lifts of v with respect to Γ_1 and Γ_2 respectively. The difference $v^{\Gamma_1, \Gamma_2} := (v^{\Gamma_1} - v^{\Gamma_2})$ is vertical, so it can be considered as the vector field on Y_x, $v^{\Gamma_1, \Gamma_2} : Y_x \to T(Y_x) = (VY)_x$. Using the linear operator L, we have the vector field $L(v^{\Gamma_1, \Gamma_2}) : F(Y_x) = (V^F Y)_x \to T(F(Y_x)) = (V(V^F Y))_x$ which can be considered as (defined on $(V^F Y)_x$) vertical vector field $L(v^{\Gamma_1, \Gamma_2}) : V^F Y \to V(V^F Y)$. We put

$$(\Gamma_1, \Gamma_2)^{F,L}(u, v) = L(v^{\Gamma_1, \Gamma_2})(u).$$

Since L is a linear operator, the map $(\Gamma_1, \Gamma_2)^{F,L}$ is linear in the second factor. Further,

$$\mathcal{V}^{F,L}(\Gamma_1, \Gamma_2) := \mathcal{V}^{F, \Gamma_1} + (\Gamma_1, \Gamma_2)^{F,L} : V^F Y \times_M TM \to TV^F Y$$

is a connection on $V^F Y \to M$ canonically dependent on Γ_1 and Γ_2.

Definition 3. The connection $\mathcal{V}^{F,L}(\Gamma_1, \Gamma_2)$ is called the (F, L)-vertical prolongation of (Γ_1, Γ_2).

From the geometrical construction of $(\Gamma_1, \Gamma_2)^{F,L}$ it follows directly

Lemma 1. We have

(i) $(\Gamma_1, \Gamma_2)^{F,L} = -(\Gamma_2, \Gamma_1)^{F,L}$,

(ii) $(\Gamma_1, \Gamma_2)^{F,c_1 L_1 + c_2 L_2} = c_1(\Gamma_1, \Gamma_2)^{F,L_1} + c_2(\Gamma_1, \Gamma_2)^{F,L_2}$, $c_1, c_2 \in \mathbb{R}$,

(iii) $\mathcal{V}^{F,L}(\Gamma, \Gamma) = \mathcal{V}^{F, \Gamma}.$

The main result of the present paper is the following classification theorem.

Theorem 1. $\mathcal{V}^{F,L}$ are the only natural operators transforming pairs of connections on $Y \to M$ into connections on $V^F Y \to M$.

We have the following corollary of Theorem 1.
Corollary 1. $\hat{\nabla}^F(\Gamma_1, \Gamma_2) := \frac{1}{2}(\nabla^F \Gamma_1 + \nabla^F \Gamma_2)$ is the only natural symmetric operator transforming pairs of connections on $Y \to M$ into connections on $V^F Y \to M$.

Proof of Corollary 1. Let D be such an operator. By Theorem 1, $D(\Gamma_1, \Gamma_2) = \nabla^F \Gamma_1 + (\Gamma_1, \Gamma_2)^{F,L}$. By the symmetry of D we get $\nabla^F \Gamma_1 + (\Gamma_1, \Gamma_2)^{F,L} = \nabla^F \Gamma_2 - (\Gamma_1, \Gamma_2)^{F,L}$ because $(\Gamma_2, \Gamma_1)^{F,L} = -(\Gamma_1, \Gamma_2)^{F,L}$. Then $(\Gamma_1, \Gamma_2)^{F,L} = \frac{1}{2}(\nabla^F \Gamma_2 - \nabla^F \Gamma_1)$ and $D(\Gamma_1, \Gamma_2) = \frac{1}{2}(\nabla^F \Gamma_1 + \nabla^F \Gamma_2)$ as well. \[\Box\]

Now we show that one can omit the finite order assumption in Proposition 2. In this way we obtain the following generalization of this result:

Proposition 2'. ∇^F is the only natural operator transforming connections on $Y \to M$ into connections on $V^F Y \to M$.

Proof. Write $\Gamma_1 = \Gamma_2 = \Gamma$ in Corollary 1. Then we obtain $\hat{\nabla}^F(\Gamma, \Gamma) = \nabla^F \Gamma$. \[\Box\]

Remark 2. The (F,L)-prolongation is a geometrical construction, which transforms two connections Γ_1 and Γ_2 on $Y \to M$ into a connection $\nabla^{F,L}(\Gamma_1, \Gamma_2)$ on $V^F Y \to M$. Another example of a geometrical construction defined on pairs of connections is the mixed curvature, which is defined as the Frölicher-Nijenhuis bracket $[\Gamma_1, \Gamma_2]$. We remark that the mixed curvature is a section $Y \to VY \otimes \otimes^2 T^\ast M$, see 27.4 in [7].

By Theorem 1, natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^F Y \to M$ depend on linear natural operators $L: T \to TF$ on vector fields. Now we show that it suffices to find the basis of such linear operators.

Proposition 4. Let L_1, \ldots, L_k be the basis of linear natural operators $T \to TF$ transforming vector fields on n-manifolds N into vector fields on FN. Then all natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^F Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \nabla^F \Gamma_1 + c_1(\Gamma_1, \Gamma_2)^{F,L_1} + \cdots + c_k(\Gamma_1, \Gamma_2)^{F,L_k}, \quad c_i \in \mathbb{R}.$$

Proof. An arbitrary linear operator $L: T \to TF$ is of the form $L = c_1L_1 + \cdots + c_kL_k$, $c_i \in \mathbb{R}$. Then the assertion follows from Theorem 1 and from Lemma 1. \[\Box\]

3. Applications

Clearly, the flow prolongation (1) is a natural linear operator $T \to TF$. So for an arbitrary natural bundle F on $\mathcal{M}f_n$ there exists a natural operator transforming pairs of connections Γ_1, Γ_2 on $Y \to M$ into a connection $\nabla^{F,A}(\Gamma_1, \Gamma_2)$ on $V^F Y \to M$. Now let $F = T^A$ be a Weil functor determined by a Weil algebra A. By [7], all product preserving functors on $\mathcal{M}f$ are of this type. We have the following action

$$A \times TT^A N \to TT^A N$$

of the elements of A on the tangent vectors on $T^A N$. Indeed, the multiplication of the tangent vectors of N by reals is a map $m: \mathbb{R} \times TN \to TN$. Applying the
functor T^A and using the fact that $T^A R = A$ we obtain a map $T^A m : A \times T^A T^A N \to T^A T^A N$. Finally, the canonical identification $T^A T^A N \cong T^A T^A N$ yields the action (5). So for an arbitrary $a \in A$ we have a natural affinor on $T^A N$ of the form

$$a f(a)_N : T^A T^A N \to T^A T^A N.$$

By [7], all natural linear operators transforming vector fields on N into vector fields on $T^A N$ are of the form

$$a f(a) \circ T^A$$

for all $a \in A$, where T^A means the flow operator. Thus, we have

Proposition 5. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^A Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \nu^{T^A}, a f(a) \circ T^A (\Gamma_1, \Gamma_2)$$

for all $a \in A$.

It is well known that $J^1 Y \to Y$ is an affine bundle with the associated vector bundle $V Y \otimes T^* M$. So the difference of two connections $\Gamma_1, \Gamma_2 : Y \to J^1 Y$ is a map $\delta(\Gamma_1, \Gamma_2) : Y \to V Y \otimes T^* M$, which is called the deviation of Γ_1 and Γ_2. Clearly, this map can be written as

$$(\delta(\Gamma_1, \Gamma_2))(y, z) = x$$

for all $x \in A$. A. Cabras and I. Kolář [1] have constructed the vertical A-prolongation of (6) with respect to the first factor

$$(\nu^{V^A} \delta(\Gamma_1, \Gamma_2)) : V^A Y \times_M T^A TM \to V V^A Y$$

fiberwise in the following way. Denoting by $q : T M \to M$ the bundle projection, we can write $\delta_z : Y \to (V Y)_z$ for the map $y \mapsto \delta(\Gamma_1, \Gamma_2)(y, z)$, $y \in Y$, $z \in T M$, $q(z) = x$. Applying T^A we obtain a map

$$(V^A \delta)_z := T^A(\delta_z) : V^A Y \to T^A(\nu^{V^A} Y)_z = T^A(\nu^{V^A} Y)_x$$

which yields a map $V^A \delta : V^A Y \times_M T^A TM \to V^A V Y$. Further, the canonical exchange diffeomorphism of Weil functors $i^A_B : T^B(T^A N) \to T^A(T^B N)$ from [7] induces the exchange diffeomorphism $i_Y : V^A V Y \to V V^A Y$, [1]. Then the map (7) can be defined by

$$(\nu^{V^A} \delta(\Gamma_1, \Gamma_2))(y, z) = i_Y \circ (V^A \delta).$$

On the other hand, we can construct the vertical A-prolongations $\nu^{V^A} \Gamma_1, V^A \Gamma_2 : V^A Y \times_M T M \to T V^A Y$ of Γ_1 and Γ_2. The deviation of the connections $\nu^{V^A} \Gamma_1$ and $V^A \Gamma_2$ is a map

$$(\delta(\nu^{V^A} \Gamma_1, V^A \Gamma_2)) : V^A Y \times_M T M \to V^A V Y.$$

A. Cabras and I. Kolář have proved the formula

$$(\delta(\nu^{V^A} \Gamma_1, V^A \Gamma_2)) = \nu^{V^A} \delta(\Gamma_1, \Gamma_2).$$

Consider now a linear map (4), where we put $F = T^A$ and $L = T^A, (\Gamma_1, \Gamma_2)T^A : V^A Y \times_M T M \to V(V^A Y)$. We have
Proposition 6. Let T^A be the flow operator. Then we have

$$ (\Gamma_1, \Gamma_2)^{T^A, T^A} = \mathcal{V}^1 A \delta(\Gamma_1, \Gamma_2). $$

Proof. Denoting by $\delta := \delta(\Gamma_1, \Gamma_2): (TM)_x \to (VY)_x$, we have $\delta(v) = \Gamma_1 v - \Gamma_2 v$ for $v \in (TM)_x$. Since $\delta(v)$ is vertical, it can be considered as a vector field $Y_x \to T(Y_x)$. Applying the flow operator T^A we obtain a vector field $T^A \delta(v): T^A(Y_x) = (V^A Y)_x \to T((V^A Y)_x) = (V(V^A Y))_x$, which can be considered as a vertical vector field on $V^A Y$. This defines the map

$$ (\Gamma_1, \Gamma_2)^{T^A, T^A}: V^A Y \times_M TM \to V(V^A Y), \quad (\Gamma_1, \Gamma_2)^{T^A, T^A}(u, v) = T^A \delta(v)(u). $$

In general, given a vector field $\xi: N \to TN$, the flow prolongation $T^A \xi$ can be also constructed as the composition $T^A \xi = i^{A, B}_N \circ T^A \xi$, where $i^{A, B}_N: T^A TN \to TT^A N$ is the canonical exchange diffeomorphism and D is the Weil algebra of dual numbers corresponding to the tangent bundle T. By (8) and (12) we have $T^A \delta = V^1 A \delta$. \Box

Remark 3. It is interesting to pose a question whether the formulas (10) and (11) can be generalized for an arbitrary natural bundle F on M_f^n. Given any connections Γ_1 and Γ_2 on $Y \to M$, one can construct their F-vertical prolongations $V^F \Gamma_1, V^F \Gamma_2: V^F Y \times_M TM \to T(V^F Y)$ and then the deviation

$$ \delta(V^F \Gamma_1, V^F \Gamma_2): V^F Y \times_M TM \to V(V^F Y). $$

Further, for any linear natural operator $L: T \to TF$ we have the map (4). From Theorem 1 it follows that

$$ \delta(V^F \Gamma_1, V^F \Gamma_2) = (\Gamma_1, \Gamma_2)^{F, L}, $$

for some linear natural operator L. By (10) and (11), if $F = T^A$, then $L = T^A$. From the proof of Theorem 1 (see the construction (14) of L^D) it follows that even in the general case of an arbitrary natural bundle F we have $L = F$, where F is the flow operator (1). We remark that the construction of the vertical prolongation (7) and the proof of (11) essentially depend on the existence of the exchange diffeomorphism $i_Y: V^A Y \to VV^A Y$. We recall that the bundle functor F is said to have the point property, if $F(\text{pt}) = \text{pt}$, where pt denote the one-point manifold. From Theorem 39.2 in [7] it follows directly that if F has the point property, then there exists a natural equivalence $i^F_Y: V^F Y \to VV^F Y$ if and only if F is a Weil functor T^A. In this case, i^F_Y coincides with i_Y.

Let $T^{r}*N = J^r(N, R)_0$ be the space of all r-jets from an n-manifold N into reals with target 0. Since R is a vector space, $T^{r}*N$ has a canonical structure of the vector bundle over N. $T^{r}*N$ is called the r-th order cotangent bundle and the dual vector bundle

$$ T^{(r)}N = (T^{r}*N)^* $$

is called the r-th order tangent bundle. For every map $f: N \to N_1$ the jet composition $A \mapsto A \circ (j^r_x f)$, $x \in N$, $A \in (T^{r}*N_1)_{f(x)}$ defines a linear map
by Vnations (with real coefficients) of the flow operator \(T \), which is defined on the whole category \(Mf \) of all smooth manifolds and all smooth maps. Clearly, for \(r = 1 \) we obtain the classical tangent functor \(T \) and for \(r > 1 \) the functor \(T^{(r)} \) does not preserve products. Obviously, we have the canonical inclusion \(TN \subset T^{(r)}N \). Using fiber translations on \(T^{(r)}N \), we can extend every section \(X : N \rightarrow TN \) into a vector field \(V(X) \) on \(T^{(r)}N \). This defines a linear natural operator \(V : T \rightsquigarrow TT^{(r)} \). The second author has in [10] determined all natural operators \(T \rightsquigarrow TT^{(r)} \). From this result we obtain directly that all linear natural operators \(T \rightsquigarrow TT^{(r)} \) transforming vector fields on \(N \) into vector fields on \(T^{(r)}N \) are of the form \(c_1T^{(r)} + c_2V \), \(c_i \in \mathbb{R} \). Using Proposition 4 we have

Proposition 7. All natural operators transforming pairs of connections on \(Y \rightarrow M \) into a connection on \(V^{T^{(r)}Y} \rightarrow M \) are of the form

\[
(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}T^{(r)} \Gamma_1 + c_1(\Gamma_1, \Gamma_2)T^{(r)}\mathcal{J} \Gamma_2 + c_2(\Gamma_1, \Gamma_2)T^{(r)}V, \quad c_i \in \mathbb{R}.
\]

By Corollary 4.1 in [11], all linear natural operators \(T \rightsquigarrow TT^* \) are linear combinations (with real coefficients) of the flow operator \(T^* \) and the operator \(V \) defined by \(V(X)_x = \langle \omega, X_x \rangle \cdot C_\omega \), where \(C \) is the Liouville vector field of the cotangent bundle and \(X \in \mathfrak{X}(N) \), \(\omega \in T^*_xN \), \(x \in N \). Thus, we have

Proposition 8. All natural operators transforming pairs of connections on \(Y \rightarrow M \) into a connection on \(V^{T^*Y} \rightarrow M \) are of the form

\[
(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}T^* \Gamma_1 + c_1(\Gamma_1, \Gamma_2)T^*\mathcal{J} \Gamma_2 + c_2(\Gamma_1, \Gamma_2)T^*V, \quad c_i \in \mathbb{R}.
\]

Using [11], we can generalize this result in the following way. First, we have \(r \) linear natural operators \(E_1, \ldots, E_r : T \rightsquigarrow TT^{*r} \) defined by

\[
E_k(X)(j^r_x\gamma) = \langle X(x), j^r_x\gamma \rangle - \frac{d}{dt}j^r_x\gamma \bigg|_{t=0} + tj^r_x(\gamma)^k, \quad k = 1, \ldots, r
\]

where \(X \in \mathfrak{X}(N) \) is a vector field on \(N \), \(j^r_x\gamma \in T^{(r)*}_xN \) and \((\gamma)^k \) is the \(k \)-th power of the map \(\gamma : N \rightarrow \mathbb{R} \). Further, if we interpret \(X \) as the differentiation, then \((X \gamma - X\gamma(x))(\gamma)^{s-1} \) is a function on \(N \) which maps the point \(x \in N \) into zero. So we can define linear natural operators \(F_2, \ldots, F_r : T \rightsquigarrow TT^{*r} \) by

\[
F_s(X)(j^r_x\gamma) = \frac{d}{dt}\bigg|_{t=0} \left[j^r_x\gamma + tj^r_x((X \gamma - X\gamma(x))(\gamma)^{s-1}) \right], \quad s = 2, \ldots, r.
\]

By [11], the flow operator \(T^{*r} \) and the operators \(E_1, \ldots, E_r, F_2, \ldots, F_r \) form the basis over \(\mathbb{R} \) of the vector space of all linear natural operators \(T \rightsquigarrow TT^{*r} \). By Proposition 4 we have
Proposition 9. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^TFY \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto V^TF \Gamma_1 + c_0(\Gamma_1, \Gamma_2)T^*E_1 + \cdots + c_r(\Gamma_1, \Gamma_2)T^*E_r + d_2(\Gamma_1, \Gamma_2)T^*E_2 + \cdots + d_r(\Gamma_1, \Gamma_2)T^*E_r,$$

$c_i, d_i \in \mathbb{R}$.

We remark that there are many papers which classify all natural operators $T \mapsto TF$ for particular natural bundles F, see e.g. [4], [6], [10]-[12], [14] and [15]. For example, P. Kobak [4] has determined all natural operators $T \mapsto TT^*$ and J. Tomáš [14] has classified all natural operators $T \mapsto TT^*T^k$, where $T^k_0N = J^k_0(R, N)$ is the bundle of k-dimensional velocities of order r. If we restrict ourselves only to linear natural operators, we can easily determine all natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^FY \to M$.

4. Proof of Theorem 1

From now on $R^{m,n}$ is the trivial bundle $R^m \times R^n$ over R^m. The usual coordinates on $R^{m,n}$ will be denoted by $x^1, \ldots, x^m, y^1, \ldots, y^n$. If D is a natural operator of our type, then for given connections Γ_1 and Γ_2 on an $F\mathcal{M}_{m,n}$-object $Y \to M$ the difference

$$\Delta(\Gamma_1, \Gamma_2) = \tilde{D}(\Gamma_1, \Gamma_2) - V^F \Gamma_1 : V^FY \times_M TM \to V(V^FY)$$

is a fiber linear map covering the identity on V^FY. So it remains to describe all natural operators of the type as Δ. Consider a natural operator D of the type as Δ. We prove some auxiliary lemmas.

Lemma 2. Suppose that

$$D\left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha| + |\beta| \leq K} \Gamma_{1\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, \right.$$

$$\left. \sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha| + |\beta| \leq K} \Gamma_{2\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}\right) (u,v) = 0$$

for any $K \in \mathbb{N}$, any $(u,v) \in (V^F R^{m,n})_0 \times T_0 R^m$, any $\Gamma_{1\alpha\beta}^j$ and any $\Gamma_{2\alpha\beta}^j$ for i,j,α,β as indicated. Then $D = 0$.

Proof. It follows from a corollary of non-linear Peetre theorem (Corollary 19.8 in [7]).

 Lemma 3. Suppose that

$$D\left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + y^\beta dx^i \otimes \frac{\partial}{\partial y^\beta}, \sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}\right) (u,v) = 0$$
and
\[D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + y^\beta dx^\alpha \otimes \frac{\partial}{\partial y^\beta} \right)(u, v) = 0 \]

for any \((u, v) \in (V^F R^{m,n})_j \times T_0 R^m\), any \(n\)-tuple \(\beta\) and any \(i_0 = 1, \ldots, m\) and \(j_0 = 1, \ldots, n\). Then \(D = 0\).

Proof. Using the invariance of \(D\) with respect to the base homotheties \(t \text{id}_{R^m} \times \text{id}_{R^n}\) for \(t > 0\) we get the homogeneity condition

\[D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} t^{|\alpha|+1} \Gamma^j_{110\alpha\beta} x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j} \right), \]

\[\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma^j_{12\alpha\beta} x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j} \right)(u, v) \]

\[= \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma^j_{12\alpha\beta} x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j} \right)(u, v). \]

By the homogeneous function theorem, this type of homogeneity gives that

\[D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma^j_{11\alpha\beta} x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j} \right), \]

\[\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma^j_{21\alpha\beta} x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j} \right)(u, v) \]

depends linearly on \(\Gamma^j_{11(0)\beta}\) and \(\Gamma^j_{21(0)\beta}\) and is independent of \(\Gamma^j_{11\alpha\beta}\) and \(\Gamma^j_{21\alpha\beta}\) for \(|\alpha| > 0\). So, the assumptions of the lemma imply the assumption of Lemma 2, which completes the proof. \(\square\)

Lemma 4. Suppose that

\[D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^\alpha \otimes Y, \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} \right)(u, v) = 0 \]

and

\[D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^\alpha \otimes Y \right)(u, v) = 0 \]

for any \((u, v) \in (V^F R^{m,n})_0 \times T_0 R^m\), any \(i_0 = 1, \ldots, m\) and any vector field \(Y\) on \(R^n\). Then \(D = 0\).

Proof. Obviously, the assumptions of the lemma imply the assumptions of Lemma 3, which completes the proof. \(\square\)
Lemma 5. Suppose that
\[
D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^1} + \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)(u, v) = 0
\]
and
\[
D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}, \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^1}\right)(u, v) = 0
\]
for any \((u, v) \in (V^F R^{m,n})_0 \times T_0 R^m\). Then \(D = 0\).

Proof. Any non-vanishing vector field \(Y\) on \(R^n\) is locally \(\frac{\partial}{\partial y^1}\) modulo a local diffeomorphism \(\varphi : R^m \rightarrow R^n\). There exists a diffeomorphism \(\psi : R^m \rightarrow R^n\) sending \(x^1\) into \(x^1\). Using the invariance of \(D\) with respect to \(\mathcal{F}\mathcal{M}_{m,n}\)-map \(\psi \times \varphi\) we can see that the assumptions of the lemma imply the assumptions of Lemma 4 with non-vanishing \(Y\). Then the regularity of \(D\) implies the assumptions of Lemma 4, which completes the proof. \(\square\)

Lemma 6. Suppose that
\[
D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial x^i} \otimes \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)(u, v) = 0
\]
for any \((u, v) \in (V^F R^{m,n})_0 \times T_0 R^m\), and any vector field \(Y\) on \(R^n\). Then \(D = 0\).

Proof. The assumption of the lemma implies the first assumption of Lemma 5. Further, using the invariance of \(D\) with respect to \(\mathcal{F}\mathcal{M}_{m,n}\)-map \((x^1, \ldots, x^m, -y^1 + x^1, y^2, \ldots, y^n)\) we obtain the second assumption of Lemma 5. Finally, Lemma 5 completes the proof. \(\square\)

Lemma 7. Suppose that
\[
D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial x^i}, \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)(u, \frac{\partial}{\partial x^1}(0)) = 0
\]
for any \(u \in (V^F R^{m,n})_0\), and any vector field \(Y\) on \(R^n\). Then \(D = 0\).

Proof. Any vector \(v \in T_0 R^m\) with \(d_0 x^1(v) \neq 0\) is proportional to \(\frac{\partial}{\partial x^1}(0)\) modulo a diffeomorphism \(\psi : R^m \rightarrow R^n\) preserving \(x^1\). Using the invariance of \(D\) with respect to \(\mathcal{F}\mathcal{M}_{m,n}\)-map \(\psi \times \text{id}_{R^n}\) we see that the assumption of the lemma implies the assumption of Lemma 6 with \(d_0 x^1(v) \neq 0\). Then using the regularity of \(D\) we obtain the assumption of Lemma 6, which completes the proof. \(\square\)

Let \(Y\) be a vector field on an \(n\)-manifold \(N\). Define a vector field \(L^D(Y)\) on \(F(N)\) by
\[
L^D(Y)(u) = D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial x^i}, \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)(u, \frac{\partial}{\partial x^1}(0)) \in T_u F(N)
\]
for any \(u \in (V^F (R^m \times N))_0 = F(N)\), where we use the obvious identification \(V_u (V^F (R^m \times N)) = T_u F(N)\).
Lemma 8. The M_{fn}-natural operator $L^D : T \rightarrow TF$ is linear.

Proof. The M_{fn}-naturalness is a simple consequence of the invariance of D with respect to $FM_{m,n}$-maps of the form $id_{Rm} \times id_{Rn}$. Further, by the invariance of D with respect to the base homotheties $t id_{Rm} \times id_{Rn}$ for $t > 0$ we get the homogeneity condition $D(tY)(u) = tD(Y)(u)$. So, the linearity is an immediate consequence of the homogeneous function theorem. □

Lemma 9. We have

$$D\left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes Y \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)\left(u, \frac{\partial}{\partial x^1}(0)\right)$$

$$= \left(\sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes Y \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i}\right)^{F,L_D}(u, \frac{\partial}{\partial x^1}(0))$$

for any $u \in (VF_{m,n})_0$ and $Y \in \mathcal{X}(R^n)$, where $(\Gamma_1, \Gamma_2)^{F,L}$ was defined in Section 2.

Proof. Observe that $v_F = v + Y$ if $\Gamma = \sum_{i=1}^{m} dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes Y$ and $v = \frac{\partial}{\partial x^1}(0)$. □

Now, using Lemma 7 we see that $D(\Gamma_1, \Gamma_2) = (\Gamma_1, \Gamma_2)^{F,L_D}$. Therefore $\tilde{D} = V^{F,L_D}$ and the proof of Theorem 1 is complete. □

References

