THE SYMMETRY OF UNIT IDEAL STABLE RANGE CONDITIONS

HUANYIN CHEN AND MIAOSEN CHEN

Abstract. In this paper, we prove that unit ideal-stable range condition is right and left symmetric.

Let I be an ideal of a ring R. Following the first author (see [1]), (a_{11}, a_{12}) is an (I)-unimodular row in case there exists some invertible matrix $A = (a_{ij})_{2 \times 2} \in \text{GL}_2(R, I)$. We say that R satisfies unit I-stable range provided that for any (I)-unimodular row (a_{11}, a_{12}), there exist $u, v \in \text{GL}_1(R, I)$ such that $a_{11}u + a_{12}v = 1$. The condition above is very useful in the study of algebraic K-theory and it is more stronger than (ideal)-stable range condition. It is well known that $K_1(R, I) \cong \text{GL}_1(R, I)/V(R, I)$ provided that R satisfies unit I-stable range, where $V(R, I) = \{(1 + ab)(1 + ba)^{-1} \mid 1 + ab \in U(R), (1 + ab)(1 + ba)^{-1} \equiv 1 \pmod{I}\}$ (see [2, Theorem 1.2]). In [3], K_2 group was studied for commutative rings satisfying unit ideal-stable range and it was shown that $K_2(R, I)$ is generated by (a, b, c), provided that R is a commutative ring satisfying unit I-stable range. We refer the reader to [4-10], the papers related to stable range conditions.

In this paper, we investigate representations of general linear groups for ideals of a ring and show that unit ideal-stable range condition is right and left symmetric.

Throughout, all rings are associative with identity. $M_n(R)$ denotes the ring of $n \times n$ matrices over R and $\text{GL}_n(R, I)$ denotes the set $\{ A \in \text{GL}_n(R) \mid A \equiv I_n(\text{mod } M_n(I)) \}$, where $\text{GL}_n(R)$ is the n dimensional general linear group of R and $I_n = \text{diag}(1, \ldots, 1)_{n \times n}$. Write $B_{12}(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $B_{21}(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$. We always use $[u, v]$ to denote the matrix diag (u, v).

Theorem 1. Let I be an ideal of a ring R. Then the following properties are equivalent:

(1) R satisfies unit I-stable range.
(2) For any $A \in \text{GL}_2(R, I)$, there exist $u, v, w \in \text{GL}_1(R, I)$ such that $A = [u, v]B_{21}(*)B_{12}(*)B_{21}(-w)$.

1991 Mathematics Subject Classification: 16U99, 16E50.

Key words and phrases: unit ideal-stable range, symmetry.

Received June 23, 2003, revised February 2004.
Proof. (1) ⇒ (2) Pick $A = (a_{ij})_{2\times 2} \in GL_2(R, I)$. Then we have $u_1, v_1 \in GL_1(R, I)$ such that $a_{11}u_1 + a_{12}v_1 = 1$. So $a_{11} + a_{12}v_1^{-1} = u_1^{-1}$, hence,

$$\begin{align*}
\begin{pmatrix}
 u_1^{-1} & a_{12} \\
 a_{12} & a_{22}
\end{pmatrix}
\end{align*} = \begin{pmatrix}
 u_1^{-1} & a_{12} \\
 a_{12} & a_{22}
\end{pmatrix} \cdot \begin{pmatrix}
 a_{12} & 0 \\
 0 & a_{22}
\end{pmatrix} \cdot \begin{pmatrix}
 a_{12} & 0 \\
 0 & a_{22}
\end{pmatrix}
$$

Let $v = a_{22} - (a_{21} + a_{22}v_1^{-1})u_1a_{12}$. Then $AB_{21}(v_1u_1^{-1}) = B_{21}((a_{21} + a_{22}v_1^{-1})u_1) \begin{pmatrix}
 u_1^{-1} & a_{12} \\
 0 & v
\end{pmatrix}$. It follows from $A, B_{21}(v_1u_1^{-1}), B_{21}((a_{21} + a_{22}v_1^{-1})u_1) \in GL_2(R)$ that $\begin{pmatrix}
 u_1^{-1} & a_{12} \\
 0 & v
\end{pmatrix} \in GL_2(R)$. In addition, $\begin{pmatrix}
 u_1^{-1} & a_{12} \\
 0 & v
\end{pmatrix} = \begin{pmatrix}
 u_1^{-1} & 0 \\
 0 & v
\end{pmatrix} \begin{pmatrix}
 1 & u_1a_{12} \\
 0 & 1
\end{pmatrix}$ and $\begin{pmatrix}
 u_1^{-1} & a_{12} \\
 0 & v
\end{pmatrix} \in GL_2(R)$. This infers that $[u_1^{-1}, v] \in GL_2(R)$, and so $v \in U(R)$. Set $u = u_1^{-1}$, and $w = v_1u_1^{-1}$. Then $A = [u, v]B_{21}(*)B_{12}(*)B_{21}(-w)$. Clearly, $u, w \in GL_1(R, I)$. From $a_{22} \in 1 + I$ and $a_{12} \in I$, we have $v \in GL_1(R, I)$, as required.

(2) ⇒ (1) For any (I)-unimodular row (a_{11}, a_{12}), we get $A = (a_{ij})_{2\times 2} \in GL_2(R, I)$. So there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{21}(*)B_{12}(*)B_{21}(-w)$. Hence $AB_{21}(u) = [u, v]B_{21}(*)B_{12}(*)$, and then $a_{11} + a_{12}w = u$. That is, $a_{11}u + a_{12}wu^{-1} = 1$. As $u^{-1}, uw \in GL_1(R, I)$, we are done. □

Let Z be the integer domain, $4Z$ the principal ideal of Z. Then $1 \in GL_1(Z, 4Z)$, while $-1 \notin GL_1(Z, 4Z)$. But we observe the following fact.

Corollary 2. Let I be an ideal of a ring R. Then the following are equivalent:

1. R satisfies unit I-stable range.
2. For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{21}(w)B_{12}(*)B_{21}(*)$.

Proof. (1) ⇒ (2) Given any $A = (a_{ij})_{2\times 2} \in GL_2(R, I)$, then $A^{-1} \in GL_2(R, I)$. By Theorem 1, we have $u, v, w \in GL_1(R, I)$ such that $A^{-1} = [u, v]B_{21}(*)B_{12}(*)B_{21}(-w)$. Thus $A = B_{21}(w)B_{12}(*)B_{21}(*)[u^{-1}, v^{-1}] = [u^{-1}, v^{-1}]B_{21}(vwu^{-1})B_{12}(*)B_{21}(*)$. Clearly, $u^{-1}, v^{-1}, vwu^{-1} \in GL_1(R, I)$, as required.

(2) ⇒ (1) Given any $A = (a_{ij})_{2\times 2} \in GL_2(R, I)$, we have $u, v, w \in GL_1(R, I)$ such that $A^{-1} = [u, v]B_{21}(w)B_{12}(*)B_{21}(*)$, and so $A = B_{21}(*)B_{12}(*)B_{21}(-w)B_{21}(*)B_{12}(*)B_{21}(-vwu^{-1})$. It follows by Theorem 1 that R satisfies unit I-stable range. □

Theorem 3. Let I be an ideal of a ring R. Then the following are equivalent:

1. R satisfies unit I-stable range.
2. For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{12}(*)B_{21}(*)B_{12}(w)$.
3. For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{12}(w)B_{21}(*)B_{12}(*)$.

Proof. (1) ⇒ (2) Observe that if $A \in GL_2(R, I)$, then the matrix $P^{-1}AP$ belongs to $GL_2(R, I)$, where $P = \begin{pmatrix}
 0 & 1 \\
 1 & 0
\end{pmatrix}$. Thus the formula in Theorem 1 can be replaced
Thus we have by use of (1)

\[
A = (P[u, v]P^{-1})(PB_{21}(*)P^{-1})(PB_{12}(*)P^{-1})(PB_{21}(-w)P^{-1}).
\]

That is, \(A = [v, u]B_{12}(*)B_{21}(-w) \), as required.

(2) \(\Rightarrow \) (1) For any \((I)\)-unimodular \((a_{11}, a_{12})\) row, \(\begin{pmatrix} a_{12} & * \\ a_{11} & * \end{pmatrix} \in GL_2(R, I) \). So we have \(u, v, w \in GL_4(R, I) \) such that

\[
\begin{pmatrix} a_{12} & * \\ a_{11} & * \end{pmatrix} = [u, v]B_{12}(*)B_{21}(*)B_{12}(-w).
\]

Thus \(a_{11} + a_{12}w = v \), hence, \(a_{11}v^{-1} + a_{12}vw^{-1} = 1 \). Obviously, \(v^{-1}, vw^{-1} \in GL_4(R, I) \), as required.

(2) \(\Leftrightarrow \) (3) is obtained by applying (1) \(\Leftrightarrow \) (2) to the inverse matrix of an invertible matrix \(A \).

Let \(I \) be an ideal of a ring \(R \). We use \(R^{op} \) to denote the opposite ring of \(R \) and use \(I^{op} \) to denote the corresponding ideal of \(I \) in \(R^{op} \).

Corollary 4. Let \(I \) be an ideal of a ring \(R \). Then the following are equivalent:

1. \(R \) satisfies unit \(I \)-stable range.
2. \(R^{op} \) satisfies unit \(I^{op} \)-stable range.

Proof. (2) \(\Rightarrow \) (1) Construct a map \(\varphi : M_2(R^{op}) \rightarrow M_2(R)^{op} \) by \(\varphi((a_{ij})_{2 \times 2}) = \left(\begin{smallmatrix} a_{ij} \end{smallmatrix} \right)_{2 \times 2}^{T^{op}} \). It is easy to check that \(\varphi \) is a ring isomorphism.

Given any \(A \in GL_2(R, I) \), \(\varphi^{-1}(P^{op}(A^{-1})^{op}(P^{-1})^{op}) \in GL_2(R^{op}, I^{op}) \), where \(P = [1, -1] \). By Theorem 1, there exist \(u^{op}, v^{op}, w^{op} \in GL_1(R^{op}, I^{op}) \) such that \(\varphi^{-1}(P^{op}(A^{-1})^{op}(P^{-1})^{op}) = [u^{op}, v^{op}]B_{21}(*)B_{12}(*)B_{12}(-w) \), whence

\[
P^{-1}A^{-1}P = B_{12}(-w)B_{21}(*)B_{12}([u, v]).
\]

This means that

\[
P^{-1}A = [u^{-1}, v^{-1}]B_{12}(*)B_{21}(*)B_{12}(w).
\]

So \(A = (P[u^{-1}, v^{-1}]P^{-1})(PB_{12}(*)P^{-1})(PB_{21}(*)P^{-1})(PB_{12}(w)P^{-1}) \). Hence \(A = [u^{-1}, v^{-1}]B_{12}(*)B_{21}(*)B_{12}(-w) \). Clearly, \(u^{-1}, v^{-1}, uwv^{-1} \in GL_1(R, I) \). According to Theorem 3, \(R \) satisfies unit \(I \)-stable range.

(1) \(\Rightarrow \) (2) is symmetric.

Theorem 5. Let \(I \) be an ideal of a ring \(R \). Then the following are equivalent:

1. \(R \) satisfies unit \(I \)-stable range.
2. For any \((I)\)-unimodular \((a_{11}, a_{12})\) row, there exist \(u, v \in GL_1(R, I) \) such that \(a_{11}u - a_{12}v = 1 \).
3. For any \(A \in GL_2(R, I) \), there exist \(u, v, w \in GL_1(R, I) \) such that

\[
\]

Proof. (1) \(\Leftrightarrow \) (2) Observe that \(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in GL_2(R, I) \) if and only if

\[
\begin{pmatrix} a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{pmatrix} \in GL_2(R, I).
\]

Thus \((a_{11}, -a_{12}) \) is an \((I)\)-unimodular row if and only if so is \((a_{11}, a_{12})\), as required.

(2) \(\Leftrightarrow \) (3) is similar to Theorem 1.

Let \(I \) be an ideal of a ring \(R \). As a consequence of Theorem 5, we prove that \(R \) satisfies unit \(I \)-stable range if and only if for any \(A \in GL_2(R, I) \), there exist
$u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{12(*)}B_{21(*)}B_{12(w)}$. We say that
$
\begin{pmatrix}
a_{11} & \ast \\
a_{21} & \ast
\end{pmatrix}
$

is an (I)-unimodular column in case there exists $A = (a_{ij})_{2 \times 2} \in GL_2(R, I)$. By the symmetry, we can derive the following.

Corollary 6. Let I be an ideal of a ring R. Then the following are equivalent:

1. R satisfies unit I-stable range.
2. For any (I)-unimodular column $\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$, there exist $u, v \in GL_1(R, I)$ such that $ua_{11} + va_{21} = 1$.
3. For any (I)-unimodular column $\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$, there exist $u, v \in GL_1(R, I)$ such that $ua_{11} - va_{21} = 1$.

Suppose that R satisfies unit I-stable range. We claim that every element in I is an difference of two elements in $GL_1(R, I)$. For any $a \in I$, we have
\[
\begin{pmatrix}
1 & a \\
a & 1 + a^2
\end{pmatrix} = B_{21(a)}B_{12(a)} \in GL_2(R, I).
\]
This means that $(1, a)$ is an (I)-unimodular. So we have some $u, v \in GL_1(R, I)$ such that $u + av = 1$. Hence $a = v^{-1} - uv^{-1}$, as asserted.

Let I be an ideal of a ring R. Define $QM_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + d, a, b, c, d \in R \right\}$ and $QM_2(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + d, a, b, c, d \in I \right\}$. Define
\[
QM_T^2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + b = c + d, a, b, c, d \in R \right\} \quad \text{and} \quad QM_T^2(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + b = c + d, a, b, c, d \in I \right\}.
\]
As an application of the symmetry of unit ideal-stable range condition, we derive the following.

Theorem 7. Let I be an ideal of a ring R. Then the following are equivalent:

1. R satisfies unit I-stable range.
2. $QM_2(R)$ satisfies unit $QM_2(I)$-stable range.
3. $QM_T^2(R)$ satisfies unit $QM_T^2(I)$-stable range.

Proof. (1) \Rightarrow (2) Let $TM_2(R)$ denote the ring of all 2×2 lower triangular matrices over R, and let $TM_2(I)$ denote the ideal of all 2×2 lower triangular matrices over I.

If (A_{11}, A_{12}), where $A_{11} = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$ and $A_{12} = \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix}$, is a unimodular row, then (a_{11}, b_{11}) and (a_{22}, b_{22}) are unimodular rows, and so $a_{11}u_1 + b_{11}v_1 = 1$ and $a_{22}u_2 + b_{22}v_2 = 1$ for some $u_1, u_2, v_1, v_2 \in GL_1(R, I)$. Then there are matrices
$U = \begin{pmatrix} u_1 \\ ** \\ u_2 \end{pmatrix}, V = \begin{pmatrix} v_1 \\ ** \\ v_2 \end{pmatrix}$ such that $A_{11}U + A_{12}V = I$. Now we construct a map $\psi : QM_2(R) \to TM_2(R)$ given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a + c \\ c & d - c \end{pmatrix}$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QM_2(R)$. For any $\begin{pmatrix} x \\ z \end{pmatrix} \in TM_2(R)$, we have
$\psi\left(\begin{pmatrix} x & z \\ z & y + z \end{pmatrix} \right) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Thus we have \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(R, I) \) such that \(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \). Therefore \(a + bu \in GL_1(R, I) \) and \(u \in GL_1(R, I) \), as desired.

(1) \(\Rightarrow \) (3) Clearly, we have an anti-isomorphism \(\psi : QT^2M_2(R) \to QM_2(R^{op}) \) given by \(\psi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{op} & c^{op} \\ b^{op} & d^{op} \end{pmatrix} \) for any \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QT^2M_2(R) \). Hence \(QT^2M_2(R) \cong (QM_2(R^{op}))^{op} \). Likewise, we have \(QT^2M_2(I) \cong (QM_2(I^{op}))^{op} \). Thus we complete the proof by Corollary 4.

It follows by Theorem 7 that \(R \) satisfies unit 1-stable range if and only if so does \(QM_2(R) \) if and only if so does \(QM_2^2(R) \).

Acknowledgements. It is a pleasure to thank the referee for excellent suggestions and corrections which led to the new versions of Theorem 3, Theorem 5 and Theorem 7 and helped us to improve considerably the first version of the paper.

References

DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY
JINHUA, ZHEJIANG 321004
PEOPLE’S REPUBLIC OF CHINA
E-mail: chyzxl@sparc2.hunnu.edu.cn miaosen@mail.jhptt.zj.cn