THE CANONICAL TENSOR FIELDS
OF TYPE (1, 1) ON $(J^r(\odot^2 T^*))^*$

PAWEL MICHALEC

Abstract. We prove that every natural affinor on $(J^r(\odot^2 T^*))^*(M)$ is proportional to the identity affinor if $\dim M \geq 3$.

0. Introduction

For every n-dimensional manifold M we have the vector bundle

$$J^r(\odot^2 T^*)(M) = \{ j^r_x \tau | \tau \text{ is a symmetric tensor field type } (0, 2) \text{ on } M, x \in M \}.$$

Every local diffeomorphism $\varphi : M \rightarrow N$ between n-manifolds gives a vector bundle homomorphism $J^r(\odot^2 T^*)(\varphi) : J^r(\odot^2 T^*)(M) \rightarrow J^r(\odot^2 T^*)(N)$, $j^r_x \tau \rightarrow j^r_{\varphi(x)}(\varphi_* \tau)$. Functor $J^r(\odot^2 T^*) : \mathcal{M}f_n \rightarrow \mathcal{VB}$ is a vector natural bundle over n-manifolds in the sense of [5]. Let $(J^r(\odot^2 T^*))^* : \mathcal{M}f_n \rightarrow \mathcal{VB}$ be the dual vector bundle, $(J^r(\odot^2 T^*))^*(M) = (J^r(\odot^2 T^*)(M))^*$, $(J^r(\odot^2 T^*))^*(\varphi) = (J^r(\odot^2 T^*)(\varphi^{-1}))^*$ for M and φ as above.

An affinor on a manifold M is a tensor field of type $(1, 1)$ on M. A natural affinor Q on $(J^r(\odot^2 T^*))^*$ is a system of affinors

$$Q : T(J^r(\odot^2 T^*))^*(M) \rightarrow T(J^r(\odot^2 T^*))^*(M)$$

on $(J^r(\odot^2 T^*))^*(M)$ for every n-manifold M satisfying the naturality condition $T(J^r(\odot^2 T^*))^*(\varphi) \circ Q = Q \circ T(J^r(\odot^2 T^*))^*(\varphi)$ for every local diffeomorphism $\varphi : M \rightarrow N$ between n-manifolds.

In this paper we prove, that every natural affinor Q on $(J^r(\odot^2 T^*))^*$ over n-manifolds is proportional to the identity affinor if $n \geq 3$.

The proof of the classification theorem is based on the method from paper [7], where there are determined the natural affinors on $(J^r(\Lambda^2 T^*))^*$. However the proof is different, because the tensor field $dx^1 \odot dx^1$ on \mathbb{R}^n is non-zero, in contrast to $dx^1 \wedge dx^1$.

2000 Mathematics Subject Classification: 58A20.

Key words and phrases: natural affinor, natural bundle, natural transformation.

Received December 1, 2001.
Natural affinors on some natural bundle F can be used to study torsions $[Q,\Gamma]$ of a connection Γ of F. That is why, the natural affinors have been study in many papers, [11], e.t.c.

The usual coordinates on \mathbb{R}^n are denoted by x^i. The canonical vector fields on \mathbb{R}^n are denoted by $\partial_i = \frac{\partial}{\partial x^i}$.

All manifolds are assumed to be finite dimensional and smooth, i.e. of class C^∞. Mappings between manifolds are assumed to be smooth.

1. **The Linear Natural Transformations** $T(J'(\mathbb{R}^2T^*))^* \to (J'(\mathbb{R}^2T^*))^*$

A natural transformation $T(J'(\mathbb{R}^2T^*))^* \to (J'(\mathbb{R}^2T^*))^*$ over n-manifolds is a system of fibred maps

$$A : T(J'(\mathbb{R}^2T^*))^*(M) \to (J'(\mathbb{R}^2T^*))^*(M)$$

over id_M for every n-manifold M such that

$$(J'(\mathbb{R}^2T^*))^*(f) \circ A = A \circ T(J'(\mathbb{R}^2T^*))^*(f)$$

for every local diffeomorphism $f : M \to N$ between n-manifolds.

A natural transformation $A : T(J'(\mathbb{R}^2T^*))^* \to (J'(\mathbb{R}^2T^*))^*$ is called linear if A gives a linear map $T_y((J'(\mathbb{R}^2T^*))^*(M) \to ((J'(\mathbb{R}^2T^*))^*(M))_x$ for any $y \in ((J'(\mathbb{R}^2T^*))^*(M))$, $x \in M$.

Theorem 1. If $n \geq 3$ and r are natural numbers, then every linear natural transformation $A : T(J'(\mathbb{R}^2T^*))^* \to (J'(\mathbb{R}^2T^*))^*$ over n-manifolds is equal to 0.

The proof of Theorem 1 will occupy Sections 2 – 6.

2. **The Reducibility Propositions**

Every element from the fibre $((J'(\mathbb{R}^2T^*))^*(\mathbb{R}^n))_0$ is a linear combination of all elements $(j^0_\alpha(x^\alpha \, dx^i \odot dx^j))^*$, where $\alpha \in (\mathbb{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, $i, j = 1, \ldots, n$. The elements $(j^0_\alpha(x^\alpha \, dx^i \odot dx^j))^*$ are dual basis to the basis $j^0_\alpha(x^\alpha \, dx^i \odot dx^j)$ of $(J'(\mathbb{R}^2T^*)(\mathbb{R}^n))_0$.

Consider a linear natural transformation $A : T(J'(\mathbb{R}^2T^*))^* \to (J'(\mathbb{R}^2T^*))^*$.

Lemma 1. Suppose A satisfies

$$(A(u), j^0_\alpha(x^\alpha \, dx^i \odot dx^j)) = 0$$

for every $u \in T(J'(\mathbb{R}^2T^*))^*(\mathbb{R}^n))$, $\alpha \in (\mathbb{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, $i, j = 1, \ldots, n$. Then $A = 0$.

Proof. If assumptions of Lemma 1 meet, then $A(u) = 0$ for every $u \in (T(J'(\mathbb{R}^2T^*))^*(\mathbb{R}^n))_0$. Let $w \in T(J'(\mathbb{R}^2T^*))^*(M)_x$, $x \in M$. There exists a chart $\varphi : M \supset U \to \mathbb{R}^n$ such that $\varphi(x) = 0$ and U is open subset including x. Since A is invariant with respect to φ, we have $A(w) = T(J'(\mathbb{R}^2T^*))^*(\varphi^{-1})(A(u))$, where $u = T(J'(\mathbb{R}^2T^*))^*(\varphi)(w) \in T(J'(\mathbb{R}^2T^*))^*(\mathbb{R}^n))_0$. Then $A(w) = 0$, because $A(u) = 0$. That is why $A = 0$. The lemma is proved. \qed
Lemma 2. Suppose that
\[\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(\mathbb{R}^n))_0 \), \(\alpha \in (\mathbb{N} \cup \{0\})^n \), \(|\alpha| \leq r \), \(i \leq j, i, j = 1, \ldots, n \). Then \(A = 0 \).

Proof. Let \(u \in (T(J^r(\odot^2 T^*))^*(\mathbb{R}^n))_0 \), \(\alpha \in (\mathbb{N} \cup \{0\})^n \), \(|\alpha| \leq r \), \(i \leq j, i, j = 1, \ldots, n \). It is enough to prove that \(\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0 \).

Consider two cases

a) \(i = j \). Let \(\varphi : \mathbb{R}^n \to \mathbb{R}^n \) be a diffeomorphism transforming \(x^i \) into \(x^j \) and \(x^\alpha \) into \(x^\alpha \) for some \(\tilde{\alpha} \in (\mathbb{N} \cup \{0\})^n \), \(|\tilde{\alpha}| \leq r \). From the invariance of \(A \) with respect to \(\varphi \) and the assumption of Lemma 2, we have \(\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0 \), where \(\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u) \).

b) \(i \neq j \). Let \(\varphi : \mathbb{R}^n \to \mathbb{R}^n \) be a diffeomorphism transforming \(x^i \) in \(x^j \) in \(x^2 \) and \(x^\alpha \) in \(x^\alpha \) for some \(\tilde{\alpha} \in (\mathbb{N} \cup \{0\})^n \), \(|\tilde{\alpha}| \leq r \). From the invariance of \(A \) with respect to \(\varphi \) and the assumption of Lemma 2, we have \(\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0 \), where \(\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u) \).

Lemma 3. Suppose \(A \) satisfies
\[\langle A(u), j_0^\alpha(dx^1 \circ dx^1) \rangle = \langle A(u), j_0^\alpha(dx^1 \circ dx^1) \rangle = \langle A(u), j_0^\alpha(dx^1 \circ dx^2) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(\mathbb{R}^n))_0 \), \(\alpha \in (\mathbb{N} \cup \{0\})^n \), \(|\alpha| \leq r \), \(i \leq j, i, j = 1, \ldots, n \). Then \(A = 0 \).

Proof. Let \(\alpha \in (\mathbb{N} \cup \{0\})^n \), \(|\alpha| \leq r \), \(u \in (T(J^r(\odot^2 T^*))^*(\mathbb{R}^n))_0 \), \(\alpha \neq e_3 = (0, 0, 1, 0, \ldots, 0) \in (\mathbb{N} \cup \{0\})^n \).

On the strength of Lemma 2 it is enough to prove that
\[\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^1) \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0. \]

We can set that \(\alpha \neq 0 \). Let \(\varphi : \mathbb{R}^n \to \mathbb{R}^n \) be a diffeomorphism transforming \(x^1 \) in \(x^1 \), \(x^2 \) in \(x^2 \) and \(x^3 + x^\alpha \) in \(x^3 \). From the invariance of \(A \) with respect to \(\varphi \) and the assumption of Lemma 3, we have
\[\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^1) \rangle + \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^1) \rangle = \langle A(u), j_0^\alpha((x^3 + x^\alpha) dx^1 \circ dx^1) \rangle = \langle A(\tilde{u}), j_0^\alpha(x^3 dx^1 \circ dx^1) \rangle = 0 \]
where \(\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u) \).
Similarly \(\langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0. \)

Lemma 4. Suppose that
\[\langle A(u), dx^1 \circ dx^2 \rangle = \langle A(u), j_0^\alpha(x^\alpha dx^1 \circ dx^2) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(\mathbb{R}^n))_0 \). Then \(A = 0 \).
Proof. By Lemma 3 it is sufficient to show that
\[\langle A(u), j_0^2(dx^1 \otimes dx^1) \rangle = \langle A(u), j_0^2(x^3 dx^1 \otimes dx^1) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(R^n))_0 \).

Let \(u \in (T(J^r(\odot^2 T^*))^*(R^n))_0 \). Consider a diffeomorphism \(\varphi : R^n \to R^n \)
transforming \(x^1 \) in \(x^1 \), \(x^2 \) in \(x^1 + x^2 \) and \(x^3 \) in \(x^3 \). Then from the invariance of \(A \)
with respect to \(\varphi \) and the assumption of lemma, we have
\[0 = \langle A(\tilde{u}), j_0^2(dx^1 \otimes dx^2) \rangle \\
= \langle A(u), j_0^2(dx^1 \otimes (dx^1 + dx^2)) \rangle \\
= \langle A(u), j_0^2(dx^1 \otimes dx^1) \rangle + \langle A(u), j_0^2(dx^1 \otimes dx^2) \rangle, \]
where \(\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi^{-1})(u) \). So \(\langle A(u), j_0^2(dx^1 \otimes dx^1) \rangle = 0 \).
Similarly \(\langle A(u), j_0^2(x^3 dx^1 \otimes dx^1) \rangle = 0 \). \(\square \)

Using Lemma 4 we see that Theorem 1 will be proved after proving the following
two propositions.

Proposition 1. We have
\[\langle A(u), j_0^2(dx^1 \otimes dx^2) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(R^n))_0 \).

Proposition 2. We have
\[\langle A(u), j_0^2(x^3 dx^1 \otimes dx^2) \rangle = 0 \]
for every \(u \in (T(J^r(\odot^2 T^*))^*(R^n))_0 \).

3. Some notations

We have the obvious trivialization
\[(T(J^r(\odot^2 T^*))^*(R^n))_0 \cong R^n \times ((J^r(\odot^2 T^*))^*(R^n))_0 \times ((J^r(\odot^2 T^*))^*(R^n))_0 \]
given by \((u_1, u_2, u_3) \rightarrow (\tilde{u}_1)^C(u_2) + \frac{d}{dt}|_{t=0}(u_2 + tu_3) \), where \(\tilde{u}_1 \) is the constant
vector field on \(R^n \) such that \(\tilde{u}_1^0 = u_1 \in R^n \cong T_0R^n \) and \((\tilde{u}_1)^C \) is the complete
lift of \(\tilde{u}_1 \) to \((J^r(\odot^2 T^*))^* \).

Each \(u_\tau \in ((J^r(\odot^2 T^*))^*(R^n))_0 \), \(\tau = 2, 3 \) can be expressed in the form
\[u_\tau = \sum u_{\tau, \alpha, i, j} (j_0^\alpha(x^i dx^j \otimes dx^j))^* \],
where the sum is over all \(\alpha \in (N \cup \{0\})^n \), \(|\alpha| \leq r, i \leq j, i, j = 1, \ldots, n \).
It defines \(u_{\tau, \alpha, i, j} \) for each \(u_\tau \) as above.

4. Proof of Proposition 1

We start with the following lemma.

Lemma 5. There exists the number \(\lambda \in R \) such that
\[\langle A(u), j_0^2(dx^1 \otimes dx^2) \rangle = \lambda u_{3,(0),1,2} \]
for every \(u = (u_1, u_2, u_3) \in (T(J^r(\odot^2 T^*))^*(R^n))_0 \).
Proof. Let $\Phi : \mathbb{R}^n \times ((J^{r}(\odot 2T^{*}))^*(\mathbb{R}^n))_0 \times ((J^{r}(\odot 2T^{*}))^*(\mathbb{R}^n))_0 \rightarrow \mathbb{R}$ be such that

$$\Phi(u_1, u_2, u_3) = \langle A(u), J_0^r(dx^1 \odot dx^2) \rangle,$$

where $u = (u_1, u_2, u_3)$, $u_1 = (u_1^i) \in \mathbb{R}^n$, $i = 1, \ldots, n$, $u_2 \in ((J^{r}(\odot 2T^{*}))^*(\mathbb{R}^n))_0$, $u_3 \in ((J^{r}(\odot 2T^{*}))^*(\mathbb{R}^n))_0$.

The invariance of A with respect to the homotheties $a_t = (t^1x^1, \ldots, t^n x^n)$ for $t = (t^1, \ldots, t^n) \in \mathbb{R}^n_+$ gives the homogeneous condition

$$\Phi(T(J^{r}(\odot 2T^{*}))^*(a_1)(u)) = t^{1}t^{2}\Phi(u).$$

Then from the homogeneous function theorem, [5], it follows that $\Phi(u)$ is the linear combination of monomials in u_1^i, $u_{r,a,i,j}$ of weight t^1t^2. Moreover $\Phi(u_1, u_2, u_3)$ is linear in u_1, u_3 for u_2, since A is linear. It implies the lemma.

In particular from Lemma 5 it follows that

$$(*) \quad \langle A(\partial^C_1|w), J_0^r(dx^1 \odot dx^2) \rangle = \langle A(e_1, w, 0), J_0^r(dx^1 \odot dx^2) \rangle = 0$$

for every $w \in ((J^{r}(\odot 2T^{*}))^*(\mathbb{R}^n))_0$, where $\partial_1 = \frac{d}{dx^1}$ and (J^C) is the complete lift to $(J^r(\odot 2T^{*}))^*$.

We are now in position to prove Proposition 1. Let λ be from Lemma 5. It is enough to prove that λ is equal to 0.

We see that $\lambda = \langle A(0, 0, (J_0^r(dx^1 \odot dx^2))^*), J_0^r(dx^1 \odot dx^2) \rangle$.

We have

$$(**) \quad 0 = \langle A((x^1)^{r+1}\partial_1)^C|w), J_0^r(dx^1 \odot dx^2) \rangle$$

$$= (r+1)\langle A(0, w, (J_0^r(dx^1 \odot dx^2))^* + \ldots), J_0^r(dx^1 \odot dx^2) \rangle$$

$$= (r+1)\langle A(0, 0, (J_0^r(dx^1 \odot dx^2))^*), J_0^r(dx^1 \odot dx^2) \rangle,$$

where $w = (J_0^r((x^1)^r dx^1 \odot dx^2))^*$ and the dots is a linear combination of the $(J_0^r(x^a dx^i \odot dx^j))^*$ with $(J_0^r(x^a dx^i \odot dx^j))^* \neq (J_0^r(dx^1 \odot dx^2))^*$.

It remains to explain (**).

At first we show the second equality in (**). Let φ_t be the flow of $(x^1)^{r+1}\partial_1$. We have the following sequences of equalities

$$\langle ((x^1)^{r+1}\partial_1)^C|w), J_0^r(dx^1 \odot dx^2) \rangle = \frac{d}{dt}|_{t=0} \langle (J^r(\odot 2T^{*}))^*|_{t=0}(\varphi_t)(w), J_0^r(dx^1 \odot dx^2) \rangle$$

$$= \frac{d}{dt}|_{t=0} \langle (J^r(\odot 2T^{*}))^*|_{t=0}(\varphi_t)(w), J_0^r(dx^1 \odot dx^2) \rangle$$

$$= \frac{d}{dt}|_{t=0} \langle w, J_0^r((\varphi_{-t})^* dx^1 \odot dx^2) \rangle$$

$$= \langle w, J_0^r(d\frac{d}{dt}|_{t=0} ((\varphi_{-t})^* dx^1 \odot dx^2)) \rangle$$

$$= \langle w, J_0^r((L_{(x^1)^{r+1}\partial_1}(dx^1 \odot dx^2)) \rangle$$

$$= (r+1)\langle w, J_0^r((x^1)^r dx^1 \odot dx^2) \rangle = r+1.$$
Lemma 6. with the following lemma. where

Then, from the homogeneous function theorem, \(\text{Theorem 5,} \) it follows that \((**\))

The last equality in (**\) is clear because of Lemma 5.

We can prove the first equality in (**\) as follows. Vector fields \(\partial_1 + (x^1)^{r+1} \partial_1 \) and \(\partial_2 \) have the same \(r \)-jets at 0 \(\in \mathbb{R}^n \). Then, by [12], there exists a diffeomorphism \(\varphi : \mathbb{R}^n \rightarrow \mathbb{R}^n \) such that \(j_0^{r+1} \varphi = \text{id} \) and \(\varphi \cdot \partial_1 = \partial_1 + (x^1)^{r+1} \partial_1 \) in a certain neighborhood of 0. Obviously, \(\varphi \) preserves \(j_0^{r+1} (dx^1 \otimes dx^2) = j_0^{r+1} (\otimes^2 T^*) (\varphi)(j_0^{r+1} (dx^1 \otimes dx^2)) \) because \(j_0^{r+1} \varphi = \text{id} \). Then, using the invariance of \(A \) with respect to \(\varphi \), from (*) it follows that \(\langle A(\partial_1 + (x^1)^{r+1} \partial_1)_{\mid_w}, j_0^r (dx^1 \otimes dx^2) \rangle = \langle A(\partial_1)_{\mid_w}, j_0^r (dx^1 \otimes dx^2) \rangle = 0 \) for every \(w \in ((J^r(\otimes^2 T^*))^n) \). Now, using the linearity of \(A \), we end the proof of the first equality of (**\).

The proof of Proposition 1 is complete. \(\Box \)

5. PROOF OF PROPOSITION 2

The proof of Proposition 2 is similar to the proof of Proposition 1. We start with the following lemma.

Lemma 6. For every \(u = (u^1, u^2, u^3) \in (T(J^r(\otimes^2 T^*))^n) \), we have

\[
\langle A(u), j_0^r (x^1 dx^1 \otimes dx^2) \rangle = au_1 u_2(0),2,3 + bu_1^2 u_2(0,1,3) + cu_1^3 u_2(0,1,2)
+ eu_3 r,2,3 + fu_3 r,1,3 + gu_3 r,1,2
\]

where \(e_i = (0,0,\ldots,1,0,\ldots,0) \in (\mathbb{N} \cup \{0\})^n, 1 \) in \(i \)-position.

Proof. We will use the similar arguments as in the proof of Lemma 5.

Let \(\Phi : \mathbb{R}^n \times ((J^r(\otimes^2 T^*))^n) \rightarrow \mathbb{R} \) such that

\[
\Phi(u_1, u_2, u_3) = \langle A(u), j_0^r (x^3 dx^1 \otimes dx^2) \rangle,
\]

\(u = (u_1, u_2, u_3), u_1 = (u_1^t) \in \mathbb{R}^n, t = 1, \ldots, n, u_2 \in ((J^r(\otimes^2 T^*))^n), u_3 \in ((J^r(\otimes^2 T^*))^n) \). The invariance of \(A \) with respect to the homotheties \(a_t = (t^1 x^1, \ldots, t^n x^n) \) for \(t = (t^1, \ldots, t^n) \in \mathbb{R}_+^n \) gives the homogeneous condition

\[
\Phi(T(J^r(\otimes^2 T^*))^n)(a_t)(u)) = t^1 t^2 t^3 \Phi(u).
\]

Then from the homogeneous function theorem, [5], it follows that \(\Phi(u) \) is the linear combination of monomials in \(u_1^t, u_r, a, i, j \) of weight \(t^1 t^2 t^3 \). Moreover \(\Phi(u_1, u_2, u_3) \) is linear in \(u_1 \) and \(u_3 \) for \(u_2 \), since \(A \) is linear. It implies the lemma. \(\Box \)

To prove Proposition 2 we have to show that \(a = b = c = e = f = g = 0 \). We need the following lemmas.

Lemma 7. For every \(u \in (T(J^r(\otimes^2 T^*))^n) \), we have

\[
\langle A(u), j_0^r (x^3 dx^1 \otimes dx^2) \rangle = -\langle A(u'), j_0^r (x^3 dx^1 \otimes dx^2) \rangle,
\]

where \(u' \) is the image of \(u \) by \((x^2, x^3, x^1) \times \text{id}_{\mathbb{R}^{n-3}} \).
Proof. Consider \(u \in \left(T(J^*\otimes T^*)^* (\mathbb{R}^n) \right)_0 \). Let \(\tilde{u} \) be the image of \(u \) by \(\varphi = (x^1 + x^1x^3, x^2, \ldots, x^n) \). From Proposition 1 we have

\[
\langle A(\tilde{u}), j^*_0(dx^1 \otimes dx^2) \rangle = \langle A(u), j^*_0(dx^1 \otimes dx^2) \rangle = 0.
\]

Using the invariance of \(A \) with respect to \(\varphi^{-1} \) we have

\[
0 = \langle A(u), j^*_0(dx^1 \otimes dx^2) \rangle = \langle A(u), j^*_0(x^3 dx^1 \otimes dx^2) \rangle + \langle A(u), j^*_0(x^1 dx^2 \otimes dx^3) \rangle
\]

because \(\varphi^{-1} \) preserves \(A \), it transforms \(\tilde{u} \) in \(u \) and \(j^*_0(dx^1 \otimes dx^2) \) in \(j^*_0(dx^1 \otimes dx^2) + j^*_0(x^3 dx^1 \otimes dx^2) + j^*_0(x^1 dx^2 \otimes dx^3) \). So, \(\langle A(u), j^*_0(x^3 dx^1 \otimes dx^2) \rangle = -\langle A(u), j^*_0(x^1 dx^2 \otimes dx^3) \rangle \). Hence we have the lemma because \((x^2, x^3, x^1) \times \mathbb{R}^{n-3} \) sends \(u \) in \(u' \) and \(j^*_0(x^1 dx^2 \otimes dx^3) \) in \(j^*_0(x^3 dx^1 \otimes dx^2) \).

Lemma 8. We have \(g = f = e = 0 \).

Proof. Obviously

\[
g = \langle A(0,0), (j^*_0(x^3 dx^1 \otimes dx^2))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle
\]

by Lemma 6. Similarly

\[
f = \langle A(0,0), (j^*_0(x^2 dx^1 \otimes dx^3))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle,
\]

\[
e = \langle A(0,0), (j^*_0(x^1 dx^2 \otimes dx^3))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle.
\]

So, to prove Lemma 8 we have to show

\[
\langle A(0,0), (j^*_0(x^3 dx^1 \otimes dx^2))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle
\]

\[
= \langle A(0,0), (j^*_0(x^2 dx^1 \otimes dx^3))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle
\]

\[
= \langle A(0,0), (j^*_0(x^1 dx^2 \otimes dx^3))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle = 0.
\]

We can see that \((x^2, x^3, x^1) \times \text{id}_{\mathbb{R}^{n-3}} \) sends \((j^*_0(x^3 dx^1 \otimes dx^2))^* \) in \((j^*_0(x^2 dx^1 \otimes dx^3))^* \) and \((j^*_0(x^1 dx^2 \otimes dx^3))^* \) in \((j^*_0(x^2 dx^1 \otimes dx^3))^* \). Then using Lemma 7 it is enough to verify that \(\langle A(0,0), (j^*_0(x^3 dx^1 \otimes dx^2))^*, j^*_0(x^3 dx^1 \otimes dx^2) \rangle = 0 \). So, it is enough to prove the sequence of equalities:

\[
0 = \langle A((x^1)\varphi(-1))_{\tilde{w}}, j^*_0(x^3 dx^1 \otimes dx^2) \rangle
\]

\[
= r(\langle A(0,0, w), (j^*_0(x^3 dx^1 \otimes dx^2))^* \rangle, j^*_0(x^3 dx^1 \otimes dx^2))
\]

\[
= r(\langle A(0,0, (j^*_0(x^3 dx^1 \otimes dx^2))^*), j^*_0(x^3 dx^1 \otimes dx^2) \rangle,
\]

where \(w = (j^*_0(x^3 dx^1 \otimes dx^2))^* \in \left((J^*\otimes T^*)^* (\mathbb{R}^n) \right)_0 \).

The third equality in \((***)\) is clear on the basis of Lemma 6.

Let us explain the first equality in \((***)\). Vector fields \(\partial_1 + (x^1)^r \partial_1 \) and \(\partial_1 \) have the same \((r - 1)\)-jets at \(0 \in \mathbb{R}^n \). Then, by \([12]\) there exist a diffeomorphism \(\varphi = \varphi_1 \times \text{id}_{\mathbb{R}^{n-1}} : \mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1} \) such that \(\varphi_1 : \mathbb{R} \rightarrow \mathbb{R}, j^*_0\varphi = \text{id} \) and \(\varphi_1(\partial_1) = \partial_1 + (x^1)^r \partial_1 \) in a certain neighborhood of \(0 \in \mathbb{R}^n \). Let \(\varphi^{-1} \) sends \(\omega \) in \(\tilde{\omega} \). Then \(\tilde{\omega} \) is a linear combination of the elements \((j^*_0(x^j dx^i \otimes dx^j))^* \in \left((J^*\otimes T^*)^* (\mathbb{R}^n) \right)_0 \) for \(r \geq |\alpha| \geq 1, i, j = 1, \ldots, n, i \leq j \). (For \(\omega, j^*_0(dx^i \otimes dx^j) = (\omega, j^*_0(d(x^i \circ \varphi^{-1})) = 0 \). Then, by Lemma 6, \(\langle A(\partial_1^*, \omega), j^*_0(x^3 dx^1 \otimes dx^2) \rangle = \langle A(\omega, \tilde{\omega}, 0), j^*_0(x^3 dx^1 \otimes dx^2) \rangle = 0 \).
\(dx^2 \) = 0 (as \(j_0^* \varphi = \text{id} \)). Then from naturality of \(A \) with respect to \(\varphi \) we obtain
\[
\langle A((\partial_1 + (x^1)^r \partial_h)^\mathbb{C}_h), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle = 0. \]
Now, using the linearity of \(A \) we have
\[
\langle A(((x^1)^r \partial_h)^\mathbb{C}_h), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle = 0. \]
This ends the proof of the first equality in (**
\(\star \)).

Let us explain the second equality in (**
\(\star \)). Analysing the flow of vector field
\((x^1)^r \partial_1 \) and taking \(\omega = (j_0^*(x^3(x^1)^r \, dx^1 \circ dx^2))^* \in ((J^r(\mathbb{C}^2 T^*)^*)(\mathbb{R}^n))_0 \) we have
(similarly as in the justification of the second equality of (**
\(\star \)))
\[
\langle (x^1)^r \partial_1 \rangle^\mathbb{C}_{\omega}j_0^*(\alpha \, dx^1 \circ dx^2) = \langle \omega, j_0^*(L_{(x^1)^r \partial_1}(x^\alpha \, dx^1 \circ dx^2)) \rangle
\]
\[
= \langle \omega, \alpha_1 j_0^*((x^1)^{r-1}x^\alpha \, dx^1 \circ dx^2) \rangle
\]
\[
+ \langle \omega, j_0^*(x^\alpha \delta^1_i r(x^1)^{r-1} \, dx^1 \circ dx^2) \rangle,
\]
where \(\delta^1_i \) is the Kronecker delta.
Since \(\omega = (j_0^*(x^3(x^1)^r \, dx^1 \circ dx^2))^* \) the last sum is equal to \(r \) if \(\alpha = e_3 \) and
\((i, j) = (1, 2) \), and 0 in the other cases. Then \((x^1)^r \partial_1 \rangle^\mathbb{C}_{\omega} = r(j_0^*(x^3 \, dx^1 \circ dx^2))^* \).
This ends the proof of the second equality of (**
\(\star \)).
The proof of Lemma 8 is complete. \(\square \)

Lemma 9. We have \(a = b = c = 0 \).

Proof. Using Lemma 7 (similarly as for \(g = f = e \)) it is sufficient to prove that
\(c = 0 \), i.e. \(\langle A(\partial_0^\mathbb{C}_h j_0^*(dx^1 \circ dx^2)), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle = 0 \).
But we have
\[
0 = \langle A(\partial_0^\mathbb{C}_h j_0^*(dx^1 \circ dx^2)), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle
\]
\[
= \langle A(\partial_0^\mathbb{C}_h j_0^*(dx^1 \circ dx^2)), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle
\]
\[
= \langle A(\partial_0^\mathbb{C}_h j_0^*(dx^1 \circ dx^2)), j_0^*(x^3 \, dx^1 \circ dx^2) \rangle,
\]
where the dots is the linear combination of elements \((j_0^*(dx^1 \circ dx^2))^* \neq (j_0^*(dx^1 \circ dx^2))^* \), \(\alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \leq r, i \leq j, i, j = 1, \ldots, n \).

Equalities first and third are clear because of Lemma 6.

Let us explain the second equality. Consider the local diffeomorphism \(\varphi =
(x^1 + \frac{1}{r+1}(x^1)^{r+1}, x^2, \ldots, x^n)^{-1} \). We see that \(\varphi^{-1} \) preserves
\(j_0^*(x^3 \, dx^1 \circ dx^2) \) and \(\partial_0 \). Moreover \(\varphi^{-1} \) sends
\((j_0^*(dx^1 \circ dx^2))^* \) in \((j_0^*(dx^1 \circ dx^2))^* + \ldots \), where
the dots is as above. Now, by the invariance of \(A \) with respect to \(\varphi^{-1} \) we get the second equality in (**
\(\star \)).
The proof of Lemma 9 is complete. \(\square \)
The proof of Proposition 2 is complete.
The proof of Theorem 1 is complete. \(\square \)

7. **The natural affinors on \((J^r(\mathbb{C}^2 T^*))^* \) of vertical type**

A natural affinor \(Q : T(J^r(\mathbb{C}^2 T^*))^* \to T(J^r(\mathbb{C}^2 T^*))^* \) on \((J^r(\mathbb{C}^2 T^*))^* \) is of
vertical type if the image of \(Q \) is in the vertical space \(V(J^r(\mathbb{C}^2 T^*))^*(M) \) for every
\(n \)-manifolds \(M \).
We have the natural isomorphism

\[V(J^r(\mathbb{O}^2T^*))^*(M) \cong (J^r(\mathbb{O}^2T^*))^*(M) \times (J^r(\mathbb{O}^2T^*))^*(M) \]

given by \((u, v) = \frac{d}{dt}|_{t=0}(u + tv), u, v \in (J^r(\mathbb{O}^2T^*))_x^*(M), x \in M, \) and the natural projection \(pr_2 : V(J^r(\mathbb{O}^2T^*))^*M \to (J^r(\mathbb{O}^2T^*))^*M \) on the second factor.

Let \(Q : T(J^r(\mathbb{O}^2T^*))^* \to T(J^r(\mathbb{O}^2T^*))^* \) on \((J^r(\mathbb{O}^2T^*))^* \) be a natural affinor of vertical type. Composing \(Q \) with \(pr_2 \) we get a natural linear transformation \(pr_2 \circ Q : T(J^r(\mathbb{O}^2T^*))^* \to (J^r(\mathbb{O}^2T^*))^* \) over \(n\)-manifolds. It is equal to 0 because of Theorem 1. So, we have the following corollary.

Corollary 1. Let \(n \geq 3\), \(r \) be natural numbers. Every natural affinor \(Q \) of vertical type on \((J^r(\mathbb{O}^2T^*))^* \) over \(n\)-manifolds is equal to 0.

8. The Linear Natural Transformations

\(T(J^r(\mathbb{O}^2T^*))^* \to T\)

Let \(\pi \) be the projection of natural bundle \((J^r(\mathbb{O}^2T^*))^*\). Then the tangent map \(T\pi : T(J^r(\mathbb{O}^2T^*))^* \to TM \) defines a linear natural transformation \(T\pi : T(J^r(\mathbb{O}^2T^*))^* \to T. \) (The definition of a linear natural transformation \(T(J^r(\mathbb{O}^2T^*))^* \to T \) over \(n\)-manifolds is similar to the one in Section 1.)

Theorem 2. Let \(n \) and \(r \) be natural numbers. Every linear natural transformation \(B : T(J^r(\mathbb{O}^2T^*))^* \to T \) over \(n\)-manifolds is proportional to \(T\pi. \)

9. Proof of Theorem 2

Consider a linear natural transformation \(B : T(J^r(\mathbb{O}^2T^*))^* \to T. \) We have

Lemma 10. If \(\langle B(u), \varrho_0x^1 \rangle = 0 \) for every \(u \in (T(J^r(\mathbb{O}^2T^*))^*)(\mathbb{R}^n)\) \(_0\), then \(B = 0. \)

Proof. The proof of Lemma 10 is similar to the proofs of Lemmas 1 – 4. From the invariance of \(B \) with respect to the coordinate permutation we see that \(\langle B(u), \varrho_0x^i \rangle = 0 \) for \(i = 1, \ldots, n\) and \(u \in (T(J^r(\mathbb{O}^2T^*))^*)(\mathbb{R}^n)\) \(_0\). So \(B(u) = 0 \) for every \(u \in (T(J^r(\mathbb{O}^2T^*))^*)(\mathbb{R}^n)\) \(_0\). Then using the invariance of \(B \) with respect to the charts we obtain that \(B = 0. \)

Lemma 11. We have \(\langle B(u), \varrho_0x^1 \rangle = \lambda u_1^1 \) for some \(\lambda \in \mathbb{R}, \) where \(u = (u_1, u_2, u_3), \)

\(u_1 = (u_1^1) \in \mathbb{R}^n, \ i = 1, \ldots, n, \) and \(u_2, u_3 \in ((J^r(\mathbb{O}^2T^*))^*)(\mathbb{R}^n)\) \(_0. \)

Proof. The proof of Lemma 11 is similar to the proof of Lemma 5.

Lemma 11 shows that \(\langle (B - \lambda T\pi)(u), \varrho_0x^1 \rangle = 0 \) for every \(u \in (T(J^r(\mathbb{O}^2T^*))^*)(\mathbb{R}^n)\) \(_0. \) Then \(B - \lambda T\pi = 0 \) by Lemma 10, i.e. \(B = \lambda T\pi. \)

The proof of Theorem 2 is complete.
10. The main result

The main result of the present paper is the following theorem.

Theorem 3. Let \(n \geq 3 \) and \(r \) be natural numbers. Every natural affinor \(Q : T(J^r(\odot^2 T^*))^* \to T(J^r(\odot^2 T^*))^* \) on \((J^r(\odot^2 T^*))^* \) over \(n \)-manifolds is proportional to the identity affinor.

Proof. The composition \(T\pi \circ Q : (J^r(\odot^2 T^*))^* \to T \) is a linear natural transformation. Hence, by Theorem 2, \(T\pi \circ Q = \lambda T\pi \) for some \(\lambda \in \mathbb{R} \). Then \(Q - \lambda \text{id} : (J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^* \) is a natural affinor of vertical type, because \(T\pi \circ (Q - \lambda \text{id}) = T\pi \circ Q - \lambda T\pi = 0 \). From Corollary 1 we obtain that \(Q - \lambda \text{id} = 0 \). Thus \(Q = \lambda \text{id} \). The proof of Theorem 3 is complete. \(\square \)

References

Institute of Mathematics, Cracow University of Technology
31-155 Kraków, ul. Warszawska 24, POLAND
E-mail: pmichale@usk.pk.edu.pl