AN EXTENSION OF THE METHOD OF QUASILINEARIZATION

TADEUSZ JANKOWSKI

Abstract. The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems.

1. Introduction

Let $y_0, z_0 \in C^1(J, \mathbb{R})$ with $y_0(t) \leq z_0(t)$ on J and define the following sets

$$\Omega = \{(t, u) : y_0(t) \leq u \leq z_0(t), \ t \in J\},$$

$$\bar{\Omega} = \{(t, u) : y_0(t) \leq u \leq z_0(t), \ t \in J\}.$$

In this paper, we consider the following initial value problem

(1) \hspace{1cm} x'(t) = f(t, x(t)), \quad t \in J = [0, b], \ x(0) = k_0,

where $f \in C(\Omega, \mathbb{R}), k_0 \in \mathbb{R}$ are given. If we replace f by the sum $[f = g_1 + g_2]$ of convex and concave functions, then corresponding monotone sequences converge quadratically to the unique solution of problem (1) (see [6,8]). In this paper we will generalize this result. Assume that f has the splitting $f(t, x) = F(t, x, x)$, where $F \in C(\Omega, \mathbb{R})$. Then problem (1) takes the form

(2) \hspace{1cm} x'(t) = F(t, x(t), x(t)), \quad t \in J, \ x(0) = k_0.

2000 Mathematics Subject Classification: 34A45.
Key words and phrases: quasilinearization, monotone iterations, quadratic convergence.
Received August 15, 2001.
2. Main results

A function \(v \in C^1(J, \mathbb{R}) \) is said to be a lower solution of problem (2) if
\[
v'(t) \leq F(t, v(t), v(t)) , \quad t \in J , \quad v(0) \leq k_0 ,
\]
and an upper solution of (2) if the inequalities are reversed.

Theorem 1. Assume that:
1° \(y_0, z_0 \in C^1(J, \mathbb{R}) \) are lower and upper solutions of problem (2), respectively, such that \(y_0(t) \leq z_0(t) \) on \(J \).
2° \(F, F_x, F_y, F_{xx}, F_{xy}, F_{yy} \in C(\Omega, \mathbb{R}) \) and
\[
F_{xx}(t, x, y) \geq 0 , \quad F_{xy}(t, x, y) \leq 0 , \quad F_{yy}(t, x, y) \leq 0 \quad \text{for} \quad (t, x, y) \in \Omega.
\]

Then there exist monotone sequences \(\{y_n\}, \{z_n\} \) which converge uniformly to the unique solution \(x \) of (2) on \(J \), and the convergence is quadratic.

Proof. The above assumptions guarantee that (2) has exactly one solution on \(\Omega \).

Observe that 2° implies that \(F_x \) is nondecreasing in the second variable, \(F_x \) is nonincreasing in the third variable and \(F_y \) is nonincreasing in the last two variables. Denote this property by (A).

Let us construct the elements of sequences \(\{y_n\}, \{z_n\} \) by
\[
y_{n+1}^1(t) = F(t, y_n, y_n) + [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)](y_{n+1}(t) - y_n(t)) ,
\]
\[
y_{n+1}(0) = k_0 ,
\]
\[
z_{n+1}^1(t) = F(t, z_n, z_n) + [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)](z_{n+1}(t) - z_n(t)) ,
\]
\[
z_{n+1}(0) = k_0
\]
for \(n = 0, 1, \cdots \). Note that the above sequences are well defined.

Indeed, \(y_0(t) \leq z_0(t) \) on \(J \), by 1°. We shall show that
\[
y_0(t) \leq y_1(t) \leq z_1(t) \leq z_0(t) \quad \text{on} \quad J.
\]

Put \(p = y_0 - y_1 \) on \(J \). Then
\[
p'(t) \leq F(t, y_0, y_0) - F(t, y_0, y_0) - [F_x(t, y_0, z_0) + F_y(t, z_0, z_0)][y_1(t) - y_0(t)]
\]
\[
= [F_x(t, y_0, z_0) + F_y(t, z_0, z_0)]p(t) .
\]

Hence \(p(t) \leq 0 \) on \(J \), since \(p(0) \leq 0 \), showing that \(y_0(t) \leq y_1(t) \) on \(J \). Note that if we put \(p = z_1 - z_0 \) on \(J \), then
\[
p'(t) \leq F(t, z_0, z_0) + [F_x(t, y_0, z_0) + F_y(t, z_0, z_0)][z_1(t) - z_0(t)] - F(t, z_0, z_0)
\]
\[
= [F_x(t, y_0, z_0) + F_y(t, z_0, z_0)]p(t) , \quad \text{and} \quad p(0) \leq 0 ,
\]

respectively,
so $z_1(t) \leq z_0(t)$ on J. Next, we let $p = y_1 - z_1$ on J, so $p(0) = 0$. By the mean value theorem and property (A), we have

$$p'(t) = F(t, y_0, y_0) - F(t, z_0, y_0) + F(t, y_1, y_0) - F(t, z_1, z_0)$$

$$+ [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)]y_1(t) - y_0(t) - z_1(t) + z_0(t)$$

$$+ [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)][y_0(t) - z_0(t)]$$

$$F_x(t, y_0, y_0) - F_x(t, z_0, y_0)[z_0(t) - y_0(t)]$$

$$+ [F_x(t, y_0, z_0) + F_y(t, y_0, z_0)]p(t)$$

$$\leq [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)]p(t),$$

where $y_0(t) < \xi(t), \sigma(t) < z_0(t)$ on J. As the result we get $p(t) \leq 0$ on J, so $y_1(y) \leq z_1(t)$ on J. It proves that (3) holds.

Now we prove that y_1, z_1 are lower and upper solutions of (2), respectively. The mean value theorem and property (A) yield

$$y_1'(t) = F(t, y_0, y_0) - F(t, y_1, y_0) + F(t, y_1, y_1) - F(t, y_1, y_1)$$

$$+ [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)][y_1(t) - y_0(t)]$$

$$= [F_x(t, \xi_1, y_0) + F_y(t, y_1, \sigma_1)][y_0(t) - y_1(t)] + F(t, y_1, y_1)$$

$$+ [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)][y_1(t) - y_0(t)]$$

$$\leq [F_x(t, y_0, z_0) - F_x(t, y_0, y_0) + F_y(t, z_0, z_0) - F_y(t, y_1, y_1)][y_1(t) - y_0(t)]$$

$$+ F(t, y_1, y_1) \leq F(t, y_1, y_1),$$

where $y_0(t) < \xi_1(t), \sigma_1(t) < y_1(t)$ on J. Similarly, we get

$$z_1'(t) = F(t, z_1, z_1) + F(t, z_0, z_0) - F(t, z_1, z_0) - F(t, z_1, z_1)$$

$$+ [F_x(t, y_0, y_0) + F_y(t, z_0, z_0)][z_1(t) - z_0(t)]$$

$$= F(t, z_1, z_1) + [F_x(t, \xi_2, z_0) + F_y(t, z_1, \sigma_2)][z_0(t) - z_1(t)]$$

$$+ [F_x(t, y_0, z_0) + F_y(t, z_0, z_0)][z_1(t) - z_0(t)]$$

$$\geq F(t, z_1, z_1) + [F_x(t, z_1, z_0) - F_x(t, y_0, z_0) + F_y(t, z_1, z_0)$$

$$- F_y(t, z_0, z_0)][z_0(t) - z_1(t)] \geq F(t, z_1, z_1),$$

where $z_1(t) < \xi_2(t), \sigma_2(t) < z_0(t)$ on J. The above proves that y_1, z_1 are lower and upper solutions of (2).

Let us assume that

$$y_0(t) \leq y_1(t) \leq \cdots \leq y_{k-1}(t) \leq y_k(t) \leq z_k(t) \leq z_{k-1}(t) \leq \cdots \leq z_1(t) \leq z_0(t),$$

$$t \in J,$$

and let y_k, z_k be lower and upper solutions of problem (2) for some $k \geq 1$. We shall prove that:

$$y_k(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_k(t), \quad t \in J.$$
Let \(p = y_k - y_{k+1} \) on \(J \), so \(p(0) = 0 \). Using the mean value theorem, property (A) and the fact that \(y_k \) is a lower solution of problem (2), we obtain

\[
p'(t) \leq F(t, y_k, y_k) - F(t, y_k, y_k) - [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)][y_{k+1}(t) - y_k(t)] \\
= [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)]p(t) .
\]

Hence \(p(t) \leq 0 \), so \(y_k(t) \leq y_{k+1}(t) \) on \(J \). Similarly, we can show that \(z_{k+1}(t) \leq z_k(t) \) on \(J \).

Now, if \(p = y_{k+1} - z_{k+1} \) on \(J \), then

\[
p'(t) = F(t, y_k, y_k) - F(t, z_k, y_k) + F(t, z_k, y_k) - F(t, z_k, z_k) \\
+ [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)][y_k(t) - z_{k+1}(t) + z_k(t)] \\
= [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)][y_k(t) - z_k(t)] \\
+ [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)][y_k(t) - z_{k+1}(t) + z_k(t)] \\
\leq [F_x(t, y_k, z_k) - F_x(t, y_k, y_k)][z_k(t) - y_k(t)] \\
+ [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)]p(t) \\
\leq [F_x(t, y_k, z_k) + F_y(t, z_k, z_k)]p(t)
\]

with \(y_k(t) < \xi(t) \), \(\bar{\sigma}(t) < z_k(t) \). It proves that \(y_{k+1}(t) \leq z_{k+1}(t) \) on \(J \), so relation (4) holds.

Hence, by induction, we have

\[
y_0(t) \leq y_1(t) \leq \cdots \leq y_n(t) \leq z_n(t) \leq \cdots \leq z_1(t) \leq y_0(t) , \quad t \in J ,
\]

for all \(n \). Employing standard techniques [5], it can be shown that the sequences \(\{y_n\} \), \(\{z_n\} \) converge uniformly and monotonically to the unique solution \(x \) of problem (2).

We shall next show the convergence of \(y_n \), \(z_n \) to the unique solution \(x \) of problem (2) is quadratic. For this purpose, we consider

\[
p_{n+1} = x - y_{n+1} \geq 0 , \quad q_{n+1} = z_{n+1} - x \geq 0 \quad \text{on} \quad J ,
\]

and note that \(p_{n+1}(0) = q_{n+1}(0) = 0 \) for \(n \geq 0 \). Using the mean value theorem and property (A), we get

\[
p'_{n+1}(t) = F(t, x, x) - F(t, y_n, x) + F(t, y_n, x) - F(t, y_n, y_n) \\
- [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)][y_{n+1}(t) - x(t) + x(t) - y_n(t)] \\
= [F_x(t, \xi_1, x) + F_y(t, y_n, \bar{\sigma}_1)]p_n(t) \\
+ [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)][p_{n+1}(t) - p_n(t)] \\
\leq [F_x(t, x, x) - F_x(t, y_n, y_n) + F_x(t, y_n, x) - F_x(t, y_n, z_n) \\
+ F_y(t, y_n, y_n) - F_y(t, z_n, y_n) + F_y(t, z_n, y_n) - F_y(t, z_n, z_n)]p_n(t) \\
+ [F_y(t, y_n, z_n) + F_y(t, z_n, z_n)]p_{n+1}(t) \\
= \{F_{xx}(t, \xi_2, x)p_n(t) - F_{xy}(t, y_n, \bar{\sigma}2)q_n(t) - F_{yx}(t, \xi_3, y_n)[y_n(t) - y_n(t)] \\
- F_{yy}(t, z_n, \bar{\sigma}_3)[z_n(t) - y_n(t)]\}p_n(t) \\
+ [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)]p_{n+1}(t) ,
\]
where \(y_n(t) < \tilde{x}_1(t), \tilde{x}_2(t), \tilde{\sigma}_1(t) < x(t), x(t) < \tilde{\sigma}_2(t) < z_n(t), y_n(t) < \tilde{x}_3(t), \tilde{\sigma}_3(t) < z_n(t) \) on \(J \). Thus we obtain

\[
p'_{n+1}(t) \leq \{A_1p_n(t) + A_2q_n(t) + [A_2 + A_3][q_n(t) + p_n(t)]\}p_n(t) + M_{p_{n+1}}(t)
\]

\[
\leq M_{p_{n+1}}(t) + B_1p_n^2(t) + B_2q_n^2(t),
\]

where

\[
|F_{xx}(t, u, v)| \leq A_1, \quad |F_{xy}(t, u, v)| \leq A_2, \quad |F_{yy}(t, u, v)| \leq A_3, \quad |F_x(t, u, v)| \leq M_1,
\]

\[
|F_y(t, u, v)| \leq M_2 \quad \text{on} \quad \Omega \quad \text{with} \quad M = M_1 + M_2, \quad B_1 = A_1 + 2A_2 + \frac{3}{2}A_3,
\]

\[
B_2 = A_2 + \frac{1}{2}A_3.
\]

Now, the differential inequality implies

\[
0 \leq p_{n+1}(t) \leq \int_0^t [B_1p_n^2(s) + B_2q_n^2(s)]\exp[M(t - s)]\,ds.
\]

This yields the following relation

\[
\max_{t \in J}|x(t) - y_{n+1}(t)| \leq a_1 \max_{t \in J}|x(t) - y_n(t)|^2 + a_2 \max_{t \in J}|x(t) - z_n(t)|^2,
\]

where \(a_i = B_iS, \ i = 1, 2 \) with

\[
S = \begin{cases} \frac{b}{M \exp(Mb) - 1} & \text{if} \quad M > 0, \\ b & \text{if} \quad M = 0. \end{cases}
\]

Similarly, we find that

\[
q'_{n+1}(t) = F(t, z_n, z_n) - F(t, x, z_n) + F(t, x, z_n) - F(t, x, x)
\]

\[
+ [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)][z_{n+1}(t) - x(t) + x(t) - z_n(t)]
\]

\[
= [F_x(t, \tilde{x}_4, z_n) + F_y(t, x, \tilde{\sigma}_4)]q_n(t)
\]

\[
+ [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)][q_{n+1}(t) - q_n(t)]
\]

\[
\leq [F_x(t, z_n, z_n) - F_x(t, y_n, z_n) + F_y(t, x, x) - F_y(t, z_n, x)
\]

\[
+ F_y(t, z_n, x) - F_y(t, z_n, z_n)]q_n(t) + [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)]q_{n+1}(t)
\]

\[
= [F_{xx}(t, \tilde{x}_5, z_n) + F_{xy}(t, \tilde{\sigma}_6, x) + F_{yy}(t, z_n, \tilde{\sigma}_5)]q_n(t)
\]

\[
+ [F_x(t, y_n, z_n) + F_y(t, z_n, z_n)]q_{n+1}(t),
\]

where \(x(t) < \tilde{x}_4(t), \tilde{x}_6(t), \tilde{\sigma}_4(t), \tilde{\sigma}_5(t) < z_n(t), y_n(t) < \tilde{x}_5(t) < z_n(t) \) on \(J \). Hence, we get

\[
q'_{n+1}(t) \leq \{A_1[q_n(t) + p_n(t)] + A_2q_n(t) + A_3[q_n(t) + p_n(t)]\}q_n(t) + M_{q_{n+1}}(t),
\]

\[
\leq M_{q_{n+1}}(t) + \tilde{B}_1p_n^2(t) + \tilde{B}_2q_n^2(t),
\]
where
\[\bar{B}_1 = \frac{1}{2} A_1, \quad \bar{B}_2 = \frac{3}{2} A_1 + A_2 + A_3. \]

Now, the last differential inequality implies
\[q_{n+1}(t) \leq [\bar{B}_1 \max_{s \in J} p_n^2(s) + \bar{B}_2 \max_{s \in J} q_n^2(s)]S, \quad t \in J \]
or
\[\max_{t \in J} |x(t) - z_{n+1}(t)| \leq \bar{a}_1 \max_{t \in J} |x(t) - y_n(t)|^2 + \bar{a}_2 \max_{t \in J} |x(t) - z_n(t)|^2 \]
with \(\bar{a}_i = \bar{B}_i S, \ i = 1, 2. \)

The proof is complete. \(\square \)

Remark 1. Let \(f = h + g, \) and \(h, h, h_{xx}, g, g_{xx}, g_{xxx} \in C(\Omega_1, \mathbb{R}) \) for \(\Omega_1 = \{(t, u) : t \in J, y_0(t) \leq u \leq z_0(t)\} \). Put \(F(t, x, y) = h(t, x) + g(t, y) \). Indeed, \(F(t, x, y) = f(t, x) \) and \(F_{xx}(t, x, y) = h_{xx}(t, x) \), \(F_{xy}(t, x, y) = F_{yx}(t, x, y) = F_{yy}(t, x, y) = 0 \). Then the conclusion of Theorem 1 remains valid. (see also a result of [6] for \(\Phi = 0, \Phi_g \geq 0 \)).

Remark 2. Let \(f, h, g \) be as in Remark 1 and moreover let \(\Phi, \Phi_x, \Phi_{xx}, \Psi, \Psi_x, \Psi_{xx} \in C(\Omega_1, \mathbb{R}) \). Put \(F(t, x, y) = H(t, x) + G(t, y) - \Phi(t, y) - \Psi(t, x) \) for \(H = h + \Phi, \ G = g + \Psi \). Indeed, \(F(t, x, y) = f(t, x) \) and \(F_{xx}(t, x, y) = H_{xx}(t, x) - \Psi_{xx}(t, x), F_{xy}(t, x, y) = F_{yx}(t, x, y) = 0 \), \(F_{yy}(t, x, y) = G_{yy}(t, y) - \Phi_g(t, y) \). If assumptions of Theorem 1.4.3[8] hold \((H_{xx} \geq 0, \ \Psi_{xx} \leq 0, \ G_{yy} \leq 0, \ \Phi_g \geq 0) \) then Theorem 1 is satisfied (see also a result of [6] for \(\Phi = 0, \Phi_g \geq 0 \)).

Theorem 2. Assume that
(i) condition 1° of Theorem 1 holds,
(ii) \(F, F_x, F_y, F_{xx}, F_{xy}, F_{yx}, F_{yy} \in C(\Omega, \mathbb{R}) \) and
\[F_{xx}(t, x, y) \geq 0, \quad F_{xy}(t, x, y) \geq 0, \quad F_{yy}(t, x, y) \leq 0 \quad \text{for } (t, x, y) \in \Omega. \]

Then the conclusion of Theorem 1 remains valid.

Proof. Note that, in view of (ii), \(F_x \) is nondecreasing in the last two variables, \(F_y \) is nondecreasing in the second variable, and \(F_{yy} \) is nonincreasing in the third one. Denote this property by (B).
We construct the monotone sequences \(\{y_n\}, \{z_n\} \) by formulas:
\[y_{n+1}(t) = F(t, y_n, y_n) + [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)]|y_{n+1}(t) - y_n(t)|, \quad y_{n+1}(0) = k_0, \]
\[z_{n+1}(t) = F(t, z_n, z_n) + [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)]|z_{n+1}(t) - z_n(t)|, \quad z_{n+1}(0) = k_0 \]
for \(n = 0, 1, \ldots \).
Let \(p = y_0 - y_1 \) on \(J \). Then
\[
p'(t) \leq F(t, y_0, y_0) - F(t, y_0, y_0) - [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)][y_1(t) - y_0(t)]
\]
\[
= [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)]p(t), \quad \text{and} \quad p(0) \leq 0.
\]
Hence \(p(t) \leq 0 \) on \(J \), showing that \(y_0(t) \leq y_1(t) \) on \(J \). Similarly, we can show that \(z_1(t) \leq z_0(t) \) on \(J \). If we now put \(p = y_1 - z_1 \) on \(J \), then the mean value theorem and property (B), we have
\[
p'(t) = F(t, y_0, y_0) - F(t, z_0, y_0) + F(t, z_0, y_0) - F(t, z_0, z_0)
+ [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)][y_1(t) - y_0(t) - z_1(t) + z_0(t)]
= [F_x(t, \xi, y_0) + F_y(t, z_0, \sigma)][y_0(t) - z_0(t)]
+ [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)][p(t) - z_1(t) + z_0(t)]
\leq |F_y(t, y_0, z_0) - F_y(t, y_0, z_0)][z_0(t) - y_0(t)]
+ [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)]p(t)
\]
\[
\leq [F_x(t, y_0, y_0) + F_y(t, y_0, z_0)]p(t), \quad \text{as} \quad p(0) = 0
\]
with \(y_0(t) < \xi(t), \sigma(t) < z_0(t) \) on \(J \). Hence \(y_1(t) \leq z_1(t) \) on \(J \), and as a result, we obtain
\[
y_0(t) \leq y_1(t) \leq z_1(t) \leq z_0(t) \quad \text{on} \quad J.
\]
Continuing this process successively, by induction, we get
\[
y_0(t) \leq y_1(t) \leq \cdots \leq y_n(t) \leq z_n(t) \leq \cdots \leq z_1(t) \leq z_0(t), \quad t \in J,
\]
for all \(n \). Indeed, the sequences \(\{y_n\}, \{z_n\} \) converge uniformly and monotonically to the unique solution \(x \) of problem (2). Now, we are in a position to show that this convergence is quadratic.

Let
\[
p_{n+1} = x - y_{n+1} \geq 0, \quad q_{n+1} = z_{n+1} - x \geq 0 \quad \text{on} \quad J.
\]
Hence \(p_{n+1}(0) = q_{n+1}(0) = 0 \). The mean value theorem and property (B) yield
\[
p'_{n+1}(t) = F(t, x, x) - F(t, y_n, x) + F(t, y_n, x) - F(t, y_n, y_n)
- [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)][y_{n+1}(t) - x(t) + x(t) - y_n(t)]
= [F_x(t, \xi_1, x) + F_y(t, y_n, \sigma_1)]p_n(t)
+ [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)]p_{n+1}(t) - p_n(t)]
\leq [F_x(t, x, x) - F_x(t, y_n, x) + F_x(t, y_n, x) - F_x(t, y_n, y_n)
+ F_y(t, y_n, y_n) - F_y(t, y_n, z_n)]p_n(t)
+ [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)]p_{n+1}(t)
\]
\[
\leq \{F_{xx}(t, \xi_2, x)p_n(t) + F_{xy}(t, y_n, \sigma_2)p_n(t)
- F_{yy}(t, y_n, \sigma_3)[z_n(t) - y_n(t)]\}p_n(t)
+ [F_x(t, y_n, y_n) + F_y(t, y_n, z_n)]p_{n+1}(t),
\]
where \(y_n(t) < \xi_1(t), \xi_2(t), \sigma_1(t), \sigma_2(t) < x(t), y_n(t) < \sigma_3(t) < z_n(t) \) on \(J \). Thus we obtain

\[
p_{n+1}'(t) \leq \{(A_1 + 2A_2)p_n(t) + A_3[q_n(t) + p_n(t)]\}p_n(t) + Mp_{n+1}(t)
\]

\[
\leq Mp_{n+1}(t) + D_1p_n(t) + D_2q_n^2(t),
\]

where \(D_1 = A_1 + A_2 + \frac{3}{2}A_3, \quad D_2 = \frac{1}{2}A_3 \). Hence, we get

\[
0 \leq p_{n+1}(t) \leq \int_0^t [D_1p_n^2(s) + D_2q_n^2(s)] \exp[M(t-s)] ds,
\]

and it yields the relation

\[
\max_{t \in J} |x(t) - y_{n+1}(t)| \leq d_1 \max_{t \in J} |x(t) - y_n(t)|^2 + d_2 \max_{t \in J} |x(t) - z_n(t)|^2,
\]

where \(d_i = D_i S, \ i = 1, 2 \).

By the similar argument, we can show that

\[
\max_{t \in J} |x(t) - z_{n+1}(t)| \leq \tilde{d}_1 \max_{t \in J} |x(t) - y_n(t)|^2 + \tilde{d}_2 \max_{t \in J} |x(t) - z_n(t)|^2,
\]

with \(\tilde{d}_i = \tilde{D}_i S, \ i = 1, 2 \), for \(\tilde{D}_1 = \frac{1}{2}A_1 + A_2, \quad \tilde{D}_2 = \frac{3}{4}A_1 + 2A_2 + A_3 \).

This ends the proof. \(\square \)

References

Technical University of Gdańsk
Department of Differential Equations
11/12 G. Narutowicz Str., 80–952 Gdańsk, Poland
E-mail: tjank@mifgate.mif.pg.gda.pl