Line-hyperline pairs of projective spaces and fundamental subgroups of linear groups*

Ralf Gramlich

(Communicated by T. Grundhöfer)

Abstract. This article provides an almost self-contained, purely combinatorial local recognition of the graph on the non-intersecting line-hyperline pairs of the projective space $\mathbb{P}_n(\mathcal{F})$ for $n \geq 8$ and \mathcal{F} a division ring with the exception of the case $n = 8$ and $\mathcal{F} = \mathbb{F}_2$. Consequences of that result are a characterization of the hyperbolic root group geometry of $\text{SL}_{n+1}(\mathcal{F})$, \mathcal{F} a division ring, and a local recognition of certain groups containing a central extension of $\text{PSL}_{n+1}(\mathcal{F})$, \mathcal{F} a field, using centralizers of p-elements.

1 Introduction and preliminaries

The characterization of graphs and geometries using certain configurations that do or do not occur in some graph or geometry is a central problem in synthetic geometry. One class of such characterizations are the so-called local recognition theorems of locally homogeneous graphs. A graph Γ is called locally homogeneous if $\Gamma(x) \cong \Gamma(y)$ for all vertices $x, y \in \Gamma$, where $\Gamma(x)$ denotes the induced subgraph on the neighbours of x in Γ. A locally homogeneous graph Γ with $\Gamma(x) \cong \Delta$ is also called locally Δ. For some fixed graph Δ it is a natural question to ask for a classification of all connected graphs Γ that are locally Δ. A connected locally Δ graph Γ is locally recognizable if, up to isomorphism, Γ is the unique graph with that property. Several local recognition results of a lot of classes of graphs can be found in the literature. As an example we refer to the local recognition of the Kneser graphs by Jonathan I. Hall [7]; the Kneser graphs can be considered as ‘thin’ analogues of the graphs that are studied in this paper.

The present article focuses on graphs on line-hyperline pairs of projective spaces; more precisely, let $L_n(\mathcal{F})$ denote the graph on the non-intersecting line-hyperline pairs of the projective space $\mathbb{P}_n(\mathcal{F})$ (where n is a natural number and \mathcal{F} a division ring) in which two vertices are adjacent if the line of one vertex is contained in the hyperline of the other vertex and vice versa. Then the following holds.

*The present article was written while the author was a PhD student at TU Eindhoven.