Simplicial maps from the 3-sphere to the 2-sphere

Keerti Vardhan Madahar

(Communicated by K. Strambach)

Abstract. We give minimal simplicial maps \(h : S^3 \rightarrow S^2 \) and \(\xi : S^3_{12} \rightarrow S^2_4 \) of Hopf invariant one and two respectively. In general we give, for each \(n \geq 3 \), a simplicial map \(\xi : S^3_{2n} \rightarrow S^2_4 \) (not necessarily minimal) of Hopf invariant \(n \). We use the notation \(S^k_v \) to denote a \(v \)-vertex triangulation of the \(k \)-sphere.

Key words. Hopf invariant, Seifert fibrations, simplicial maps.

2000 Mathematics Subject Classification. 55Q25, 57M25, 57R05, 51M20, 57Q15

Introduction. Let \(f : S^3 \rightarrow S^2 \) be any map; we may assume it simplicial relative to some triangulations of \(S^3 \) and \(S^2 \). Note that the pre-image, \(f^{-1}(x) \), of an interior point \(x \) of any 2-simplex of \(S^2 \) is a simple closed curve in \(S^3 \) and by using orientations of \(S^2 \) and \(S^3 \) a natural orientation can be assigned to it. As we know any simple closed curve bounds in \(S^3 \); so by subdividing \(S^3 \) suitably, we can choose a 2-chain \(\Sigma^2 \) (say) bounded by \(f^{-1}(x) \) and orient all its 2-simplices such that the induced orientation on \(f^{-1}(x) \) coincides with its natural orientation. In this way we get a homomorphism \(f_* : H_2(\Sigma^2, f^{-1}(x)) \rightarrow H_2(S^2, x) \), defined as \(f_*([x]) = d \cdot [\beta] \) for some integer \(d \). The number \(d \) is independent of the choice of the interior point \(x \), it depends only on the homotopy class of the map \(f \) and is called Hopf invariant of the map \(f \).

We know that any two maps from the 3-sphere to the 2-sphere are homotopic if and only if they have the same Hopf invariant. In this article we give, for each \(n \in \mathbb{N} \), a simplicial map (from the 3-sphere to the 2-sphere) of Hopf invariant \(n \) and we observe that for \(n = 1, 2 \) these are minimal simplicial maps.

We say that a simplicial map \(\xi : S^3_{v(n)} \rightarrow S^2_4 \) is a minimal simplicial map of Hopf invariant \(n \) if there is no simplicial map \(S^3_{v(n)-1} \rightarrow S^2_4 \) of Hopf invariant \(n \). It seems to us that it is a hard problem to find such minimal simplicial maps. However if we restrict ourselves to the category of some special maps, e.g. if we consider only those maps \(S^3 \rightarrow S^2 \) in which the inverse image of each point of \(S^2 \) is homeomorphic to \(S^1 \) then we hope to get minimal simplicial maps of any given Hopf invariant. Note that in each homotopy class of maps \(S^3 \rightarrow S^2 \), such a special map exists. So we shall give simplicial maps \(S^3_{v(n)} \rightarrow S^2_4 \) in this category.
Indeed we are going to triangulate a particular type of the Seifert fibrations \([3]\) of the 3-sphere. We know that any Seifert fibration of \(S^3\) gives a quotient map \(S^3 \to S^2\) (see \([3]\)) under which a circle maps to a point and at most two points of \(S^2\) can be exceptional and all other points are ordinary. But in our constructions at most one point of \(S^2\) will be exceptional. We first recall definitions of ordinary and exceptional points of \(S^2\) for a given quotient map \(S^3 \to S^2\) having only one exceptional point.

Ordinary points. Let \(f : S^3 \to S^2\) be a map in which \(f^{-1}(x)\) is homeomorphic to \(S^1\) for all points \(x\) of \(S^2\) and let \(D^2\) denote the unit 2-disk in \(\mathbb{R}^2\) with centre at the origin. We say \(x \in S^2\) is an ordinary point or a regular point if there exists a neighbourhood \(U_x \subseteq S^2\) of \(x\), and homeomorphisms

\[
\begin{align*}
 f^{-1}(U_x) &\xrightarrow{h} D^2 \times S^1 \\
 f &\downarrow \\
 U_x &\xrightarrow{h} D^2
\end{align*}
\]

\(h : f^{-1}(U_x) \to D^2 \times S^1\) and \(\tilde{h} : U_x \to D^2\) with \(\tilde{h}(x) = 0\) for which the above diagram commutes.

Exceptional points. Let \(\rho : D^2 \to D^2\) be a rotation map defined as \(\rho(r \cdot e^{i\theta}) = r \cdot e^{i(\theta + 2\pi/n)}\) for some \(n \geq 2\). Consider the quotient space, \(\Gamma_n\), obtained from \(D^2 \times I\) by identifying the points \((x, 0)\) with \((\rho(x), 1)\) for all \(x \in D^2\). This identification gives a quotient map \(q_n : D^2 \times I \to \Gamma_n\) under which exactly \(n\) fibers, i.e. \(x \times I, \rho(x) \times I, \rho^2(x) \times I, \ldots, \rho^{n-1}(x) \times I\) (here \(x \neq 0\)), of \(D^2 \times I\), together form a single circle of \(\Gamma_n\) and the fiber \(0 \times I\) of \(D^2 \times I\) maps to the middle circle of \(\Gamma_n\).

Let a map \(\eta : D^2 \to D^2\) be defined as \(\eta(z) = z^n\) for some \(n \geq 2\). Then there is a unique map \(g : \Gamma_n \to D^2\) which makes the following diagram commutative.

\[
\begin{align*}
 D^2 \times I &\xrightarrow{q} \Gamma_n \\
 \eta &\downarrow \\
 D^2 &\xrightarrow{g} D^2
\end{align*}
\]

We call a point \(x\) of \(S^2\) an **exceptional** or a **singular point** of multiplicity \(n\), for a given map \(f : S^3 \to S^2\), if for each neighbourhood \(U_x\) of \(x\) there are homeomorphisms \(h : f^{-1}(U_x) \to \Gamma_n\) and \(\tilde{h} : U_x \to D^2\) with \(\tilde{h}(x) = 0\) which make the following diagram commutative.

\[
\begin{align*}
 f^{-1}(U_x) &\xrightarrow{h} \Gamma_n \\
 f &\downarrow \\
 U_x &\xrightarrow{\tilde{h}} D^2
\end{align*}
\]

A fiber corresponding to an exceptional point will be called an **exceptional fiber**.
Theorem. There exist minimal simplicial maps \(\eta, \xi : S^3_{12} \to S^2_4 \) of Hopf invariants one and two respectively, and in general for each \(n > 2 \) there is a simplicial map \(\xi : S^3_{6n} \to S^2_4 \) of Hopf invariant \(n \).

Proof. A simplicial map \(\eta : S^3_{12} \to S^2_4 \) has been shown and defined by the vertex labelling in Figures 1 and 2.

![Figure 1](image)

We have proved in [2] that the map \(\eta \) is the minimal triangulation of the well-known Hopf fibration \(h : S^3 \to S^2 \), so the map has Hopf invariant one. Now we shall give a minimal simplicial map \(\xi : S^3_{12} \to S^2_4 \) of Hopf invariant two.

Construction of a minimal simplicial map of Hopf invariant two. As we wish to make simplicial maps in which the pre-image of each point of \(S^2_4 \) (it is the minimal triangulation of the 2-sphere) is homeomorphic to \(S^1 \), so corresponding to four vertices of \(S^2_4 \) there are four simplicial circles in \(S^3 \) and each will have at least three vertices. So at least 12 vertices are needed in \(S^3 \) to make a simplicial map of any non-zero Hopf invariant. Moreover it is interesting to know that any simplicial map \(S^3_v \to S^2_4 \), with \(v \leq 11 \), is a homotopically trivial map (see Theorem IIa of [1]).

The simplicial map \(\xi : S^3_{12} \to S^2_4 = \partial[ABCD] \). Our simplicial complex \(S^3_{12} \) is the union of two solid tori. One of them, \(M^3_9 \), is the pre-image of a 2-simplex \(ABC \). Its triangulated boundary has been shown in Figure 3 below. This solid torus consists of nine
Figure 2. $T_o^2 = \partial N_{12}^3$ and N_{12}^3

Figure 3. $T_o^2 = \partial M_{0}^3$ and M_{0}^3
3-simplices, three of them are $A_0 B_0 C_0 B_1$, $A_0 A_1 B_1 C_0$, $A_1 B_1 C_1 C_0$ and the remaining six can be obtained from these by using the permutation $\sigma = (A_0 A_1 A_2)(B_0 B_1 B_2) \cdot (C_0 C_1 C_2)(D_0 D_1 D_2)$.

The second solid torus, N^3_{12}, is the pre-image of $S^2_4 \setminus \text{Int.} \ ABC$. Its triangulated boundary (shown in Figure 4 above) is isomorphic to, and will be identified with, the boundary of M^3_2. It has thirty-six 3-simplices, twelve of them are $A_0 C_0 C_2 D_0$, $A_1 A_2 C_1 D_0$, $A_1 A_2 B_2 D_0$, $A_2 B_0 B_2 D_0$, $B_0 B_2 C_2 D_0$, $B_0 C_0 C_2 D_0$, $A_0 B_1 D_0 D_1$, $B_1 C_1 D_0 D_1$, $A_1 C_1 D_0 D_1$, $A_1 B_2 D_0 D_1$, $B_2 C_2 D_0 D_1$, $A_0 C_2 D_0 D_1$ and the remaining twenty-four can be obtained from these by using the permutation σ. Note that the solid torus N^3_{12} is homeomorphic to Γ_2 under a fiber preserving homeomorphism, its middle fiber $\xi^{-1}(D)$ is exceptional of multiplicity 2.

The simplicial map $\xi : S^3_{12} \to S^2_4$ given by $X_i \mapsto X$ for all $X \in \{A, B, C, D\}$ is well defined, as under this map simplices of S^3_{12} get mapped onto the simplices of S^2_4.

Remarks. 1. The solid torus N^3_{12} contains pre-images of CAD, ABD and BCD. We
have given simplices of $\xi^{-1}(CAD)$, in Figure 5, explicitly and simplices of $\xi^{-1}(ABD)$ and $\xi^{-1}(BCD)$ can be obtained similarly. The simplicial complex $\xi^{-1}(CAD)$ consists of twelve 3-simplices, four of them are $A_0 C_0 D_0 D_2$, $A_0 A_1 C_0 D_2$, $A_1 C_0 D_1 D_2$, $A_1 C_0 C_1 D_1$ and the remaining eight can be obtained from these by using the permutation α.

2. From here it is very clear that pre-images of AD, BD and CD are Möbius strips bounded by $\xi^{-1}(A)$, $\xi^{-1}(B)$ and $\xi^{-1}(C)$ respectively. In each case the middle circle of the Möbius strip is $\xi^{-1}(D)$. Further note that pre-images of AB, BC and CA are cylinders.

3. Here vertices A, B, C are ordinary vertices while the vertex D is an exceptional vertex of multiplicity 2. So in order to verify the Hopf invariant of the map ξ, we choose a 2-chain, in S^3 bounded by one of the pre-images of A, B or C and see the restriction of the map ξ to this 2-chain. In particular let us see in Figure 6 the restriction of ξ to a 2-chain bounded by the pre-image of the vertex A of S^3.

It is clear from Figure 6 that the restricted map $\bar{\xi} : (\Sigma^2, \xi^{-1}(x)) \to (S^2, x)$ has degree ± 2, so the Hopf invariant of the map is ± 2 depending upon the choice of the orientations of S^3 and S^2.

Now we shall give for each $n \geq 3$, a simplicial map $\xi : S^3_{6n} \to S^2_5$ of Hopf invariant n but their minimality is yet to be verified.
In order to make a simplicial map $\xi : S^3_{6n} \to S^2_4$ of Hopf invariant $n \geq 3$, we take a sphere S^3_{6n} which is the union of two solid tori (M and N say) whose common boundary is shown in Figure 7 above.
The solid torus M has been triangulated with $3(2n-1)$ 3-simplices. Three of them are $A_0B_0C_0B_1$, $A_1B_1C_0A_0A_1B_1C_0$ and rest of the 3-simplices can be obtained from these by using the permutation $\pi = \prod_{X \in \{A, B, C, D\}} (X_0X_1 \ldots X_{2n-2})$.

The second solid torus has been triangulated with $3(2n-1)(3n-2)$ 3-simplices; $3(3n-2)$ of these are $C_iA_iA_{i+1}D_0$, $A_iA_{i+1}B_{i+1}D_0$, $A_{i+1}B_{i+1}B_{i+2}D_0$, $B_{i+1}B_{i+2}C_{i+1}D_0$, $B_{i+2}C_{i+1}C_{i+2}D_0$, $C_{i+1}C_{i+2}A_{i+2}D_0$, $A_0B_1D_0D_1$, $B_1C_1D_0D_1$, $A_1C_1D_0D_1$, $A_2B_{i+1}D_0D_1$, $B_{i+1}C_{i+1}D_0D_1$, $C_{i+1}A_{i+2}D_0D_1$ for each odd $i \in \mathbb{Z}/(2n-1)$ i.e. i lies in the set $\{1, 3, 5, \ldots, 2n-3\}$ and the rest of the 3-simplices can be obtained from these by using the permutation π. It is easy to verify that the simplicial map $\xi : S^3_{2n} \to S^2_4$ defined as $X_i \to X$ for all $X \in \{A, B, C, D\}$ has Hopf invariant n.

Acknowledgement. The author is grateful to Prof. K. S. Sarkaria for suggesting the problem and to Prof. W. Kühnel for invaluable suggestions which improved the presentation of the paper.

References

Received 9 November, 2000

K. V. Madahar, Mathematics Department, Panjab University—Chandigarh, India, 160014 Email: keerti_r@lycos.com