Zentralblatt MATH

Publications of (and about) Paul Erdös

Zbl.No:  842.11035
Autor:  Erdös, Paul; Nicolas, J.L.
Title:  On practical partitions. (In English)
Source:  Collect. Math. 46, No.1-2, 57-76 (1995).
Review:  Let A = {a1 = 1 < a2 < ... < ak < ...} be an infinite subset of N. A partition of n with parts in A is a way of writing n = ai1+ai2+...+aij with 1 \leq i1 \leq i2 \leq ... \leq ij. An integer a is said to be represented by the above partition, if it can be written a = sumjr = 1 \epsilonr air with \epsilonr = 0 or 1. A partition will be called practical if all a's, 1 \leq a \leq n, can be represented. When A = N, it has been proved by P. Erdös and M. Szalay that almost all paritions are practical. In this paper, a similar result is proved, first when ak = 2k, secondly when ak \geq kak-1. Finally an example due to D. Hickerson gives a set A and integers n for which a lot of non practical partitions do exist.
Reviewer:  J.L.Nicolas (Villeurbanne)
Classif.:  * 11P81 Elementary theory of partitions
                   11B83 Special sequences of integers and polynomials
Keywords:  practical partitions; partition

© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag

Books Problems Set Theory Combinatorics Extremal Probl/Ramsey Th.
Graph Theory Add.Number Theory Mult.Number Theory Analysis Geometry
Probabability Personalia About Paul Erdös Publication Year Home Page