##
**Zentralblatt MATH**

**Publications of (and about) Paul Erdös**

**Zbl.No: ** 699.05001

**Autor: ** (Ahlswede, Rudolf; Erdös, Paul; Pach, János; Spencer, Joel; Nesetril, J.; Babai, Laszlo; Fraissé, R.; Graham, Ronald L.; Sloane, N.J.A.; Tuza, Zs.)

**Title: ** Problems. (In English)

**Source: ** Irregularities of partitions, Pap. Meet., Fertod/Hung. 1986, Algorithms Comb. 8, 161-165 (1989).

**Review: ** [For the entire collection see Zbl 682.00006.]

This problem section contains following contributions: *R. Ahlswede*, A problem on equidistribution; *R. Ahlswede*, The partial transversal conjecture; *P. Erdös, J. Pach* and *J. Spencer*, Vertex partition of a graph with n vertices and n(n-1)/4 edges; *P. Erdös* and *J. Nesetril*, Induced version of Vizing's theorem with strongly independent edges and strong chromatic index; *L. Babai*, On subgroups of a group which is an alternating group as a special linear group; *R. Fraissé*, Extensions of 0-1-matrices having finite number of rows and columns; *R. L. Graham*, Colourings of sets of integers containing monochromatic arithmetic progressions; *R. L. Graham* and *N. J. A. Sloane*, How small can a non-vanishing sum of n-th roots of unity be?; *J. Nesetril*, Are the infinitely many minimal co-critical graphs?; *Zs. Tuza*, Edge sets meeting sets of edge-disjoint triangles.

**Classif.: ** * 05-01 Textbooks (combinatorics)

05Cxx Graph theory

00A07 Problem books

**Keywords: ** problem section; equidistribution; partial transversal conjecture; Vertex partition; Vizing's theorem; subgroups; 0-1-matrices; monochromatic arithmetic progressions; non-vanishing sum; n-th roots of unity; Edge sets; edge-disjoint triangles

**Index Words: ** problems

**Citations: ** Zbl 682.00006

© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag