##
**Zentralblatt MATH**

**Publications of (and about) Paul Erdös**

**Zbl.No: ** 323.52001

**Autor: ** Larman, D.G.(ed.); Rogers, C.A.(ed.) (Aitchison, P.W.; Alfsen, Erik M.; Beauzamy, B.; Bessaga, Czeslaw; Burton, G.R.; Choquet, Gustave; Davis, W.J.; Day, M.M.; Edwards, D.A.; Erdös, Paul; Ewald, G.; Figiel, T.; Fourneau, R.; Garling, D.J.H.; Grünbaum, B.; Guy, R.; Haydon, R.; James, R.C.; Klee, V.; Lima, A.; Lindenstrauss, J.; Mani, P.; Pelczynski, Aleksander; Petty, C.M.; Phelps, R.R.; Rosenthal, H.P.; Schneider, R.; Szankowski, A.; Tzafriri, L.; Wills, J.M.; Wright, J.D.M.)

**Title: ** Durham symposium on the relations between infinite-dimensional and finite-dimensional convexity. (In English)

**Source: ** Bull. Lond. Math. Soc. 8, 1-33 (1976).

**Review: ** Die Arbeit enthält Referate von folgenden Diskussionsbeiträgen:

*P. W. Aitchison*, An application of convexity to Turing machines.

*E. M. Alfsen*, Convexity and spectral theory.

*B. Beauzamy*, Minimal points and optimal sets in Banach spaces. –

*C. Bessaga*, Some topological aspects of the convexity theory. –

*G. R. Burton*, Convex bodies whose sections close to their boundaries are centrally symmetric.

*G. Choquet*, Extreme points and finiteness.

*W. J. Davis*, The l^{n}_{1} problem.

*M. M. Day*, Invariant renorming.

*D. A. Edwards*, Measures on product spaces and the Holley-Preston inequalities.

*P. Erdös*, Combinatorial problems in elementary and metrical geometry.

*G. Ewald*, Approximation classes of convex polytopes.

*T. Figiel*, A short proof of Dvoretsky's theorem.

*R. Fourneau*, A characterization of simplices.

*D. J. H. Garling*, Chatterji's martingale convergence theorem.

*B. Grünbaum*, Regular polyhedra and complexes.

*R. Guy*, The Penrose pieces.

*R. Haydon*, Banach spaces containing l_{1}(A) and types of measures on compact spaces.

*R. C. James*, Convexity and reflexivity.

*V. Klee*, Unique reducibility of subsets of topological linear spaces.

*Å. Lima*, Intersection properties of balls in Banach spaces.

*J. Lindenstrauss*, Local theory of Banach spaces.

*J. Lindenstrauss*, Type and superreflexivity.

*P. Mani*, Some characterizations of ellipsoids.

*A. Pelczynski*, The disc algebra as a Banachs pace.

*C. M. Petty*, Characterizations of Banach spaces.

*R. R. Phelps*, Differentiability of convex functions.

*R. R. Phelps*, The Bourgin-Edgar generalizations of the Choquet representation theorems.

*C. A. Rogers*, The relationship between finite-dimensional and infinite-dimensional convexity.

*C. A. Rogers*, Convex bodies that are invariant under a group of projectivities that acts transitively on their interiors.

*C. A. Rogers*, Comparison of the volumes of centrally symmetric convex bodies by their central sections.

*H. P. Rosenthal*, Normalized weakly null sequences with no unconditional subsequences.

*H. P. Rosenthal*, Weakly independent sequences and the Banach-Saks property.

*R. Schneider*, Curvature measures of convex bodies.

*A. Szankowski*, A Banach lattice without the approximation property.

*L. Tzafriri*, Orlicz spaces have the uniform approximation property.

*J. M. Wills*, 2-manifolds in the boundary complexes of convex polytopes.

*J. D. M. Wright*, An extension of the Murray-von-Neumann theory of types to compact convex sets.

**Classif.: ** * 52A05 Convex sets without dimension restrictions (convex geometry)

© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag